Biomedical Engineering Reference
In-Depth Information
[323] Li C, Yang DJ, Kuang LR, Wallace S. Polyamino acid microspheres—preparation, char-
acterization and distribution after intravenous injection in rats. Int J Pharm 1993;94:
143-52.
[324] Heller J, Helwing RF, Baker RW, Tuttle ME. Controlled release of water-soluble mac-
romolecules from bioerodible hydrogels. Biomaterials 1983;4:262-6.
[325] Lee PI. Swelling and dissolution kinetics during peptide release from erodible anionic
gel beads. Pharm Res 1993;10:980-5.
[326] Kang GD, Song S. Effect of chitosan on the release of protein from thermo sensitive
poly organophosphazene hydrogels. Int J Pharm 2008;349:188-95.
[327] Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur
J Pharm Biopharm 2008;68:34-45.
[328] Bos GW, Verrijk R, Franssen O, Bezemer JM, Hennink WE, Crommelin DJA.
Hydrogels for controlled release of pharmaceutical proteins. http:// pharmtech.find-
pharma.com/pharmtech/data/articlestandard/pharmtech/502001/4498/article.pdf.
Accessed May 2010.
[329] Franssen O, Vandervennet L, Roders P, Hennink WE. Degradable dextran hydrogels:
controlled release of a model protein from cylinders and microspheres. J Controlled
Release 1999;60:211-21.
[330] De Jong SJ, Van Eerdenbrugh B, Van Nostrum CF, Kettenes-van den Bosch JJ,
Hennink WE. Physically cross-linked dextran hydrogels by stereocomplex formation
of lactic acid oligomers: degradation and protein release behavior. J Control Release
2001;71:261-75.
[331] Cadee JA, de Groot CJ, Jiskoot W, Den Otter W, Hennink WE. Release of recombinant
human interleukin-2 from dextran-based hydrogels. J Control Release 2002;78:1-13.
[332] Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev
2008;37:1473-81.
[333] Lindman B, Stilbs P. Molecular diffusion in microemulsions. In: Friberg SE,
Bothorel P, editors. Microemulsions: structure and dynamics. Boca Raton, FL: CRC
Press; 1987. p. 119-52.
[334] Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems.
Adv Drug Deliv Rev 2000;45:89-121.
[335] Moulik SP, Paul BK. Structure, dynamics and transport properties of microemulsions.
Adv Colloid Interface Sci 1998;78:99-195.
[336] Sarciaux JM, Acar L, Sado PA. Using microemulsion formulations for oral drug deliv-
ery of therapeutic peptides. Int J Pharm 1995;120:127-36.
[337] Watnasirichaikul S, Davies NM, Rades T, Tucker IG. Preparation of biodegrad-
able insulin nanocapsules from biocompatible microemulsions. Pharm Res 2000;17:
684-9.
[338] Grafa A, Jack KS, Whittaker AK, Hook SM, Rades T. Protein delivery using nanopar-
ticles based on microemulsions with different structure-types. Eur J Pharm Sci
2008;33:434-44.
[339] Graf A, Ablinger E, Peters S, Zimmer A, Hook S, Rades T. Microemulsions containing
lecithin and sugar-based surfactants: nanoparticle templates for delivery of proteins and
peptides. Int J Pharm 2008;350:351-60.
[340] Davis SS, Hadgraft J, Palin KJ. Medical and pharmaceutical application of emulsions.
In: Becher P, editor. Encyclopaedia of emulsion technology, vol. 2. New York, NY:
Marcel Dekker; 1985. p. 159-238.
[341] Bjerregaard S, Wulf-Andersen L, Stephens RW, Roege Lund L, Vermehren C,
Soderberg I, et al. Sustained elevated plasma aprotinin concentration in mice following
Search WWH ::




Custom Search