Biomedical Engineering Reference
In-Depth Information
[38] Headley DB, Suhan NM, Horn JP. Different subcellular distributions of the vesicu-
lar monoamine transporter, VMAT2, in subclasses of sympathetic neurons. Brain Res
2007;1129:156-60.
[39] Fagerholm U. The highly permeable blood-brain barrier: an evaluation of current opin-
ions about brain uptake capacity. Drug Discovery Today 2007;12:1076-82.
[40] Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system:
a review. J Pharm Pharm Sci 2003;6:252-73.
[41] Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. Progress in drug deliv-
ery to the central nervous system by the prodrug approach. Molecules 2008;13:1035-65.
[42] Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat
brain capillary permeability. J Med Chem 1980;23:682-4.
[43] Minn A, Ghersi-Egea JF, Perrin R, Leininger B, Siest G. Drug metabolizing enzymes in
the brain and cerebral microvessels. Brain Res Rev 1991;16:65-82.
[44] Brownlees J, Williams CH. Peptidases, peptides, and the mammalian blood-brain barrier.
J Neurochem 1993;60:793-803.
[45] Koch HJ, Szecsey A, Haen E. NMDA-antagonism (memantine): an alternative pharma-
cological therapeutic principle in Alzheimer's and vascular dementia. Curr Pharm Des
2004;10:253-9.
[46] Jeffrey P, Summerfield S. Assessment of the blood-brain barrier in CNS drug discovery.
Neurobiol Dis 2010;37:33-7.
[47] Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability.
Cell Mol Neurobiol 2000;20:131-47.
[48] Xie F, Boska MD, Lof J, Uberti MG, Tsutsui JM, Porter TR. Effects of transcranial ultra-
sound and intravenous microbubbles on blood brain barrier permeability in a large ani-
mal model. Ultrasound Med Biol 2008;34:2028-34.
[49] Abbott NJ, Romero IA. Transporting therapeutics across the blood-brain barrier. Mol
Med Today 1996;2:106-13.
[50] Vyas TK, Tiwari SB, Amiji MM. Formulation and physiological factors influencing CNS
delivery upon intranasal administration. Crit Rev Ther Drug Carrier Syst 2006;23:319-47.
[51] Dhuria SV, Hanson LR, Frey WH. Novel vasoconstrictor formulation to enhance intrana-
sal targeting of neuropeptide therapeutics to the central nervous system. J Pharmacol Exp
Ther 2009;328:312-20.
[52] Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-
enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 1994;91:2076-80.
[53] Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA. Increasing volume
of distribution to the brain with interstitial infusion: dose, rather than convection, might
be the most important factor. Neurosurgery 1996;38:746-52.
[54] Bodor N. Drug targeting and retrometabolic drug design approaches—introduction. Adv
Drug Delivery Rev 1994;14:157-66.
[55] Banks WA, Kastin AJ, Barrera CM. Delivering peptides to the central nervous system:
dilemmas and strategies. Pharm Res 1991;8:1345-50.
[56] Begley DJ. Strategies for delivery of peptide drugs to the central nervous system: exploit-
ing molecular structure. J Control Release 1994;29:293-306.
[57] Marx J. NGF and Alzheimer's: hopes and fears. Science 1990;247:408-10.
[58] Scheld WM. Drug delivery to the central nervous system: general principles and relevance
to therapy for infections of the central nervous system. Rev Infect Dis 1989;11:S1669-90.
[59] Banks WA, Kastin AJ. Regulation of the passage of peptides across the blood-brain bar-
rier. In: Gorzone PD, Colburn WA, Mokotoff M, editors. Pharmacokinetics and pharma-
codynamics, vol. 3. Cincinnati, OH: Harvey Whitney Books; 1991. p. 148-53.
Search WWH ::




Custom Search