Biomedical Engineering Reference
In-Depth Information
[209] Mathot F, Van Beijsterveldt L, Préat V, Brewster M, Ariën A. Intestinal uptake and bio-
distribution of novel polymeric micelles after oral administration. J Control Release
2006;111:47-55.
[210] Smith P, Mirabelli C, Fondacaro J, Ryan F, Dent J. Intestinal 5-fluorouracil absorp-
tion: use of Ussing chambers to assess transport and metabolism. Pharm Res
1988;5:598-603.
[211] Sutton SC, Forbes AE, Cargill R, Hochman JH, LeCluyse EL. Simultaneous in vitro
measurement of intestinal tissue permeability and transepithelial electrical resistance
(TEER) using Sweetana-grass diffusion cells. Pharm Res 1992;9:316-9.
[212] Lu HH, Thomas JD, Tukker JJ, Fleisher D. Intestinal water and solute absorption stud-
ies: comparison of in situ perfusion with chronic isolated loops in rats. Pharm Res
1992;9:894-900.
[213] Thwaites DT, Simmons NL, Hirst BH. Thyrotropin-releasing hormone (TRH) uptake in
intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide
and Na-coupled glucose transport. Pharm Res 1993;10:667-73.
[214] Thwaites DT, Hirst BH, Simmons NL. Passive transepithelial absorption of thyrotropin-
releasing hormone (TRH) via a paracellular route in cultured intestinal and renal epithe-
lial cell lines. Pharm Res 1993;10:674-81.
[215] Schmitz J, Preiser H, Maestracci D, Ghosh BK, Cerda JJ, Crane RK. Purification of the
human intestinal brush border membrane. Biochim Biophys Acta 1973;323:98-112.
[216] Kessler M, Acuto O, Storelli C, Murer H, Muller M, Semenza G. A modified procedure
for the rapid preparation of efficiently transporting vesicles from small intestinal brush
border membranes and their use in investigating some properties of D-glucose and cho-
line transport systems. Biochim Biophys Acta 1978;506:136-54.
[217] Osiecka I, Porter PA, Borchardt RT, Fix JA, Gardner CR. In vitro drug absorption mod-
els. I. Brush border membrane vesicles, isolated mucosal cells and everted intestinal
rings: characterization and salicylate accumulation. Pharm Res 1985;2:284-92.
[218] Artursson P. Epithelial transport of drugs in cell culture. I: a model for studying the
passive diffusion of drugs over intestinal absorptive (CACO-2) cells. J Pharm Sci
1990;79:476-82.
[219] Hidalgo IJ, Hillgren KM, Grass GM, Borchardt RT. Characterization of the unstirred
water layer in CACO-2 cell monolayers using a novel diffusion apparatus. Pharm Res
1991;8:222-7.
[220] Cogburn JN, Donovan MG, Schasteen CS. A model of human small intestinal absorp-
tive cells. 1. Transport barrier. Pharm Res 1991;8:210-6.
[221] Buur A, Mork N. Metabolism of testosterone during in vitro transport across CACO-2
cell monolayers: evidence for b-hydroxysteroid dehydrogenase activity in differentiated
CACO-2 Cells. Pharm Res 1992;9:1290-4.
[222] Laboisse CL, Jarry A, Bouhanna C, Merlin D, Vallette G. Intestinal cell culture models.
Eur J Pharm Sci 1994;2:36-8.
[223] Borchardt RT. Rational delivery strategies to circumvent physical and metabolic barri-
ers to the oral absorption of peptides. In: Peptides: theoretical and practical approaches
to their delivery. Greenwood, SC: Capsugel Symposia Series; 1991. p. 11-19.
[224] Burton PS, Conradi RA, Hilgers AR, Ho NFH. Evidence for a polarized efflux system
for peptides in the apical membrane of CACO-2 cells. Biochem Biophys Res Commun
1993;190:760-6.
[225] Sinko PJ. Intestinal absorption of peptides and peptide analogues: implications of fast-
ing pancreatic serine protease levels and pH on the extent of oral absorption in dogs and
humans. Pharm Res 1992;9:320-5.
Search WWH ::




Custom Search