Biomedical Engineering Reference
In-Depth Information
[201] Kim B, Tang Q, Biswas PS, Xu J, Schiffelers RM, Xie FY, et al. Inhibition of ocular
angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes. Am
J Pathol 2004;165:2177-85.
[202] Tolentino MJ, Brucker AJ, Fosnot J, Ying GS, Wu IH, Malik G, et al. Intravitreal injec-
tion of vascular endothelial growth factor small interfering RNA inhibits growth and
leakage in a nonhuman primate, laser induced model of choroidal neovascularization.
Retina 2004;24:132-8.
[203] Durcan N, Murphy C, Cryan SA. Inhalable siRNA: potential as a therapeutic agent in
the lungs. Mol Pharm 2008;5:559-66.
[204] Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody
mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat
Biotechnol 2005;23:709-17.
[205] Hamar P, Song E, Kokeny G, Chen A, Ouyang N, Lieberman J. Small interfering RNA
targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad
Sci USA 2004;101:14883-8.
[206] Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, et al. RNA interference targeting
Fas protects mice from fulminant hepatitis. Nat Med 2003;9:347-51.
[207] Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, et al. Caspase 8
small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci USA
2003;100:7797-802.
[208] Moore MJ, Query CC, Sharp PA. Splicing precursors to mRNAs by the spliceosomes.
In: Gesteland RF, Atkins JF, editors. RNA world. Cold Spring Harbor, NY: Cold Spring
Harbor Lab; 1993. p. 303-58.
[209] Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair sub-
stitutions in mRNA splice junctions of human genes: causes and consequences. Hum
Genet 1992;90:41-54.
[210] Wu H, Lima WF, Crooke ST. Properties of clones and expressed human RNase H1.
J Biol Chem 1999;274:28270-8.
[211] Miller PS. Oligonucleoside methylphosphonates—synthesis and properties. In: Stein CA,
Krieg A, editors. Applied antisense oligonucleotide technology. New York, NY: Wiley-
Liss; 1998. p. 3-22.
[212] Sazani P, Kole R. Therapeutic potential of antisense oligonucleotides as modulators of
alternative splicing. J Clin Invest 2003;112:481-6.
[213] Svasti S, Suwanmanee T, Fucharoen S, Moulton HM, Nelson MH, Maeda N, et al. RNA
repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc Natl Acad
Sci USA 2009;106:1205-10.
[214] Ho SP, Hartig PR. Antisense oligonucleotides for target validation in the CNS. Curr
Opin Mol Ther 1999;1:336-43.
[215] Whitesell L, Geselowitz D, Chavany C, Fahmy B, Walbridge S, Alger JR, et al. Stability,
clearance, & disposition of intraventricularly administered oligodeoxynucleotides: impli-
cations for therapeutic application within the central nervous system. Proc Natl Acad Sci
USA 1993;90:4665-9.
[216] Peng HS, Livanov V, Zhang W, Li J, Lesher T. Modification of phosphorothioate oligo-
nucleotides yields potent analogs with minimal toxicity for antisense experiments in the
CNS. Brain Res Mol Brain Res 1998;62:1-11.
[217] Skutella T, Stohr T, Probst JC, Ramalho-Ortigao FJ, Holsboer F, Jirikowski GF. Antisense
oligonucleotides for in vivo targeting of corticotropin-releasing hormone mRNA: com-
parison of phosphorothiotate and 3-inverted probe performance (1994). Horm Metab Res
1994;26:460-4.
Search WWH ::




Custom Search