Biomedical Engineering Reference
In-Depth Information
[130] Hannon GJ, Ross JJ. Unlocking the potential of the human genome with RNA interfer-
ence. Nature 2004;431:371-8.
[131] Leeds JM, Graham MJ, Troung L, Cummins LL. Quantitation of phosphorothioate oli-
gonucleotides in human plasma. Anal Biochem 1996;235:36-43.
[132] Griffey RH, Greig MJ, Gaus HJ, Liu K, Monteith D, Winniman M, et al.
Characterization of oligonucleotide metabolism in vivo via liquid chromatography/
electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometer.
J Mass Spectrom 1997;32:305-13.
[133] Cohen AS, Bourque AJ, Wang BH, Smisek DL, Belenky A. A nonradioisotope approach
to study the in vivo metabolism of phosphorothioate oligonucleotides. Antisense Nucleic
Acid Drug Dev 1997;7:13-22.
[134] Leeds JM, Geary RS, Henry SP, Glover J, Shanahan W, Fitchett J, et al. Pharmacokinetic
properties of phosphorothioate oligonucleotides. Nucleosides Nucleotides 1997;16:
1689-93.
[135] Geary RS, Leeds JM, Henry SP, Monteith DK, Levin AA. Antisense oligonucleotide
inhibitors for the treatment of cancer: 1. Pharmacokinetic properties of phosphorothio-
ate oligodeoxynucleotides. Anticancer Drug Des 1997;12:383-93.
[136] Nicklin PL, Craig SJ, Phillips JA. Pharmacokinetic properties of phosphorothioates in
animals-absorption, distribution, metabolism and elimination. In: Crooke ST, editor.
Antisense research and application: handbook of experimental pharmacology, vol. 131.
Berlin: Springer-Verlag; 1998. p. 141-68.
[137] Crooke ST. Basic principles of antisense therapeutics. In: Crooke ST, editor. Antisense
research and application: handbook of experimental pharmacology, vol. 131. Berlin:
Springer-Verlag; 1998. p. 1-50.
[138] Bennett CF, Condon TP. Use of antisense oligonucleotides to modify inflammatory pro-
cesses. In: Crooke ST, editor. Antisense research and application: handbook of experi-
mental pharmacology, vol. 131. Berlin: Springer-Verlag; 1998. p. 371-94.
[139] Geary RS, Leeds JM. Pharmacokinetic properties of phosphorothioate oligonucleotides
in humans. In: Crooke ST, editor. Antisense research and application: handbook of
experimental pharmacology, vol. 131. Berlin: Springer-Verlag; 1998. p. 217-32.
[140] Geary RS, Leeds JM, Fitchett J, Burckin T, Truong L, Spainhour C, et al.
Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide anti-
sense inhibitor of C-raf-1 kinase expression. Drug Metab Dispos 1997;25:1272-82.
[141] Grindel JM, Musick TJ, Jiang Z, Roskey A, Agrawal S. Pharmacokinetics and metabo-
lism of an oligodeoxynucleotide phosphorothioate (GEM91®) in cynomolgus monkeys
following intravenous infusion. Antisense Nucleic Acid Drug Dev 1998;8:43-52.
[142] Phillips JA, Craig SJ, Bayley D, Christian RA, Geary R, Nicklin PL. Pharmacokinetics,
metabolism, and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (cgp
69846a) after intravenous and subcutaneous administration. Biochem Pharmacol 1997;
54:657-68.
[143] Temsamani J, Roskey A, Chaix C, Agrawal S. In vivo metabolic profile of a phosphoro-
thioate oligodeoxyribonucleotide. Antisense Nucleic Acid Drug Dev 1997;7:159-65.
[144] Cummins LL, Winniman M, Gaus HJ. Phosphorothioate oligonucleotide metabolism:
characterization of the “N”-mer by CE and HPLC-ES/MS. Bioorg Med Chem Lett
1997;7:1225-30.
[145] Brown DA, Kang SH, Gryaznov SM, DeDionisio L, Heidenreich O, Sullivan S, et al.
Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein
binding. J Biol Chem 1994;269:26801-5.
Search WWH ::




Custom Search