Biomedical Engineering Reference
In-Depth Information
[14] Colby C, Chamberlin MJ, Duesberg PH, Simon MI. Specificity of interferon induction.
In: Beers Jun RF, Braun W, editors. Biological effects of polynucleotides. New York, NY:
Springer-Verlag; 1971. p. 79-87.
[15] Ts'o PO, Miller PS, Greene JJ. Nucleic acid analogues with targeted delivery at chemo-
therapeutic agents. In: Cheng YC, Goz B, Minkoff M, editors. Development of target-
oriented anticancer drugs. New York, NY: Raven Press; 1983. p. 189-206.
[16] Barrett JC, Miller PS, Ts'o PO. Inhibitory effect of complex formation with oligode-
oxyribonucleotide ethyl phosphodiesters on transfer ribonucleic acid aminoacylation.
Biochemistry 1974;13:4897-906.
[17] Scanlon KJ. Anti-genes: siRNA, ribozymes and antisense. Curr Pharm Biotechnol
2004;5:415-20.
[18] Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective
delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008;36:
4158-71.
[19] Hajeri PB, Singh SK. siRNAs: their potential as therapeutic agents—Part I. Designing of
siRNAs. Drug Discov Today 2009;14:851-8.
[20] Urakami T, Oku N. Current status of siRNA delivery technology and siRNA drug devel-
opment. Open Drug Delivery J 2007;1:20-7.
[21] Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA
delivery. Nat Rev Drug Discov 2009;8:129-38.
[22] Juliano R, Bauman J, Kang H, Ming X. Biological barriers to therapy with antisense and
siRNA oligonucleotides. Mol Pharm 2009;6:686-95.
[23] Couture LA, Stinchcomb DT. Anti-gene therapy: the use of ribozymes to inhibit gene
function. Cell 1996;12:510-15.
[24] Haseloff J, Gerlach WL. Simple RNA enzymes with new and highly specific endoribo-
nuclease activities. Nature 1988;334:585-91.
[25] Uhlenbeck OC. Using ribozymes to cleave RNAs. In: Crooke S, Lebleu B, editors.
Antisense research and applications. Boca Raton, FL: CRC Press; 1993. p. 83-9.
[26] Parthasarathy R, Cote GJ, Gogel RF. Hammerhead ribozyme mediated inactivation of
mutant RET in medullary thyroid carcinoma. Cancer Res 1999;59:3911-14.
[27] Heidenreich O, Benseler F, Fahrenholz A, Eckstein F. High activity and stability of ham-
merhead ribozymes containing 2-modified pyrimidine nucleotides and phosphorothio-
ates. J Biol Chem 1994;269:2131-8.
[28] Hélène C. Control of gene expression by triple-helix-forming oligonucleotides—the
antigene strategy. In: Crooke S, Lebleu B, editors. Antisense research and applications.
Boca Raton, FL: CRC Press; 1993. p. 375-85.
[29] Moser HE, Dervan PB. Sequence specific cleavage of double helical DNA by triple helix
formation. Science 1987;238:645-50.
[30] Cooney M, Czernuszewicz G, Postel EH, Flint SJ, Hogan ME. Site specific oligonucle-
otide binding represses transcription of the human c-myc gene in vitro . Science 1988;24:
456-9.
[31] Faruqi AF, Egholm M, Glazer PM. Peptide nucleic acid-targeted mutagenesis of a chro-
mosomal gene in mouse cell. Proc Natl Acad Sci USA 1998;95:1398-403.
[32] Blommers MJ, Natt F, Jahnke W, Cuenoud B. Dual recognition of double stranded DNA
by 2-aminoethoxy-modified oligonucleotides—the solution structure of an intramolecu-
lar triplex obtained by NMR spectroscopy. Biochemistry 1998;37:17714-25.
[33] Faruqi AF, Krawezyk SH, Matteucci MD, Glazer PM. Potassium-resistant triple helix
formation and improved intracellular gene targeting by oligodeoxyribonucleotides con-
taining 7-deazaxanthine. Nucleic Acids Res 1997;25:633-40.
Search WWH ::




Custom Search