Biomedical Engineering Reference
In-Depth Information
[240] Horvath KA, Lu CYJ, Robert E, Pierce GF, Greene R, Sosnowski BA, et al. Improvement
of myocardial contractility in a porcine model of chronic ischemia using a combined
transmyocardial revascularization and gene therapy approach. J Thorac Cardiovasc Surg
2005;129:1071-7.
[241] Goldman S, Copelan J, Moritz T, Henderson W, Zadina K, Ovitt T, et al. Saphenous
vein graft patency 1 year after coronary artery bypass surgery and of antiplatelet ther-
apy. Circulation 1989;80:1190-7.
[242] Campeau L, Enjalbert M, Lesperance J, Bourassa MG, Kwiterovich P, Wacholder S, et
al. The relation of risk factors to the development of atherosclerosis in saphenous vein
bypass grafts and the progresion of disease in the native circulation: a study 10 years
after aortocoronary bypasses surgery. N Engl J Med 1984;311:1329-34.
[243] Cox JL, Chaisson DA, Gotleib AI. Stranger in a strange land: the pathogenesis of saphe-
nous vein graft stenosis. Prog Cardiovasc Dis 1991;34:45-68.
[244] Zwolak RM, Adams MC, Clowes AW. Kinetics of vein graft hyperplasia: association
with tangential stress. J Vasc Surg 1987;5:126-36.
[245] Ku DD, Caulfield JB, Kirklin JK. Endothelium-dependent responses in long-term
human coronary artery bypass grafts. Circulation 1991;83:402-11.
[246] George SJ, Johnson JL, Angelini GD, Newby AC, Baker AH. Adenovirusmediated gene
transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointi-
mal formation in human saphenous veins. Hum Gene Ther 1998;9:867-77.
[247] George SJ, Baker GD, Angelini GD, Newby AC. Gene transfer of tissue inhibitor of
metalloproteinase-2 inhibits metalloproteinase activity and neointima formation in
human saphenous veins. Gene Ther 1998;5:1552-60.
[248] George SJ, Lloyd CT, Angelini GD, Newby AC, Baker AH. Inhibition of late vein graft
neointima formation in human and porcine models by adenovirus-mediated overexpres-
sion of tissue inhibitor of metalloproteinase-3. Circulation 2000;101:296-304.
[249] Mann MJ, Whittemore AD, Donaldson MC, Belkin M, Conte MS, Polak JF, et al. Ex-
vivo gene therapy of human vascular bypass grafts with E2F decoy: the PREVENT sin-
gle centre, randomised, controlled trial. Lancet 1999;354:1493-8.
[250] Schwartz LB, Moawad J, Svensson EC, Tufts RL, Meyerson SL, Baunoch D, et al.
Adenoviral-mediated gene transfer of a constitutively active form of the retinoblastoma
gene product attenuates neo-intimal thickening in experimental vein grafts. J Vasc Surg
1999;29:874-83.
[251] Chen SJ, Wilson JM, Muller DWM. Adenovirus-mediated gene transfer of soluble vas-
cular cell adhesion molecule to porcine interposition vein grafts. Circulation 1994;89:
1922-8.
[252] Bai H, Morishita R, Kida I, Yamakawa T, Zhang W, Aoki M, et al. Inhibition of inti-
mal hyperplasia after vein grafting by in vivo transfer of human senescent cell-derived
inhibitor-1 gene. Hum Gene Ther 1998;5:761-9.
[253] West NE, Qian H, Guzik TJ, Black E, Cai S, George SE, et al. Nitric oxide synthase
(nNOS) gene transfer modifies venous bypass graft remodeling: effects on vascular smooth
muscle cell differentiation and superoxide production. Circulation 2001;104:1526-32.
[254] Kibbe MR, Tzeng E, Gleixner SL, Watkin SC, Kovesdi I, Lizonovo A, et al.
Adenovirusmediated gene transfer of human inducible nitric oxide synthase in porcine
vein grafts inhibits intimal hyperplasia. J Vasc Surg 2001;34:156-65.
[255] Imai E. Gene therapy approach in renal disease in the 21st century. Nephrol Dial
Transplant 2001;16:26-34.
[256] Imai E, Takabatake Y, Mizui M, Yoshitaka I. Gene therapy in renal diseases. Kidney Int
2004;65:1551-5.
Search WWH ::




Custom Search