Digital Signal Processing Reference
In-Depth Information
79. H. Ochiai, H. Imai, Performance of the deliberate clipping with adaptive symbol selection
for strictly band-limited OFDM systems. IEEE J. Sel. Areas Commun. 18 (11), 2270-2277
(2000). doi: 10.1109/49.895032
80. T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge University
Press, Cambridge, 2003). ISBN: 0-521-83539-9
81. Microsemi LX5506 InGaP HBT 4.5 6 GHz Power Amplifier
82. F.H.P. Fitzek, M. Reisslein, MPEG-4 and H.263 video traces for network performance
evaluation. IEEE Netw. 15 (6), 40-54 (2001). MPEG-4 traces, http://trace.eas.asu.edu/
TRACE/trace.html
83. IEEE P802.11 Wireless LANs, TGn Channel Models, IEEE 802.11-03/940r4 (May 10,
2004)
84. J. Medbo, P. Schramm, Channel models for HIPERLAN/2 in different indoor scenarios, ETSI
BRAN 3ERI085B
85. R. Kravets, P. Krishnan, Application-driven power management for mobile communication.
Wirel. Netw. 6 , 263-277 (2000). doi: 10.1023/A:1019149900672
86. R. Mangharam, M. Demirhan, R. Rajkumar, D. Raychaudhuri, Size matters: Size-based
scheduling for MPEG-4 over wireless channels, in SPIE & ACM Proceedings in Multimedia
Computing and Networking , vol. 3020 (2004), pp. 110-122
87. A.L. Peressini, R.E. Sullivan, J.J. Uhl Jr., Convex Programming and the Karish-Kuhn-Tucker
Conditions (Springer, Berlin, 1980), Chap. 5
88. IEEE 802.11 WG, Draft Supplement to Part II: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Enhancements
for Quality of Service (QoS), IEEE 802.11e/Draft 13.0 (Jan. 2005)
89. P. Yang, Pareto-Optimization Based Run-Time Task Scheduling for Embedded Systems, PhD
thesis, K.U. Leuven, 2004. ISBN 90-5682-541-0
90. M. Lacage, M.H. Manshaei, T. Turletti, IEEE 802.11 rate adaptation: A practical approach, in
Proceedings of the 7th ACM International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, MSWiM '04 (ACM, New York, 2004), pp. 126-134. ISBN
1-58113-953-5. doi: 10.1145/1023663.1023687
91. ns-2 Network Simulator, http://www.isi.edu/nsnam/ns
92. C. Hua, R. Zheng, Starvation modeling and identification in dense 802.11 wireless commu-
nity networks, in Proc. of the IEEE International Conference on Computer Communications
(Infocom) , 2008, pp. 1022-1030. doi: 10.1109/INFOCOM.2008.156
93. M. Krunz, A. Muqattash, S.J. Lee, Transmission power control in wireless ad hoc networks:
Challenges, solutions and open issues. IEEE Netw. 18 (5), 8-14 (2004)
94. I. Broustis, J. Eriksson, S.V. Krishnamurthy, M. Faloutsos, Implications of power control
in wireless networks: A quantitative study, in Passive and Active Network Measurement .
Springer Lecture Notes in Computer Science, vol. 4427 (2007), pp. 83-93
95. Y. Zhou, S. Nettles, Balancing the hidden and exposed node problems with power control in
CSMA/CA-based wireless networks, in The IEEE Wireless Communications and Networking
Conference , vol. 2, 2005, pp. 683-688
96. J.A. Fuemmeler, N.H. Vaidya, V.V. Veeravalli, Selecting transmit powers and carrier sense
thresholds in CSMA protocols for wireless ad hoc networks, in WICON '06: Proceedings of
the 2nd Annual International Workshop on Wireless Internet (ACM, New York, 2006), p. 15.
ISBN 1-59593-510-X. doi: 10.1145/1234161.1234176
97. V.P. Mhatre, K. Papagiannaki, F. Baccelli, Interference mitigation through power control in
high density 802.11 WLANs, in Proc. of the IEEE International Conference on Computer
Communications (Infocom) , 2007, pp. 535-543. doi: 10.1109/INFCOM.2007.69
98. X. Yang, N. Vaidya, A spatial backoff algorithm using the joint control of carrier sense
threshold and transmission rate, in Proc. of the IEEE Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) , 2007,
pp. 501-511
99. A. Kamerman, L. Monteban, WaveLAN ® -II: A high-performance wireless LAN for the un-
licensed band. Bell Labs Tech. J. 2 (3), 118-133 (1997)
Search WWH ::




Custom Search