Chemistry Reference
In-Depth Information
Table17.1 TheoxidationpotentialsvsNHEfortheredox
couplesR 2 N +
O/R 2 NO andX /X
=
E 1 / 2 oxd
E
(mv)
(mv)
740, 64
722, 46
719 68
TEMPO
805 20
4-COOH-TEMPO
4-COO -TEMPO
771 20,68
825, 64
810, 46
808 68
TEMPOL
817, 20
826, 46
851 68
4-amino-TEMPO
4-N(CH 3 ) 3 + -TEMPO
940 20
913, 46
918 20
TEMPONE
795 20
TEMPENE
870 20
3-COOH-proxyl
3-COO -proxyl
792, 46
772 69
853 46
3-AP
861, 46
872 69
3-CP
955 20
TCPO
900 46
CHDO
915 15
PTIO
936 15
carboxy-PTIO
HOO
750 70
CH 3 OO
770 71
t-BuOO
710 39
CO 3
1590 70
NO 2
1040 70
at low concentrations of oxygen, some of the reactions proceed via the formation of stable adducts and
others via electron transfer mechanism. 40-44
The reactivity of the nitroxides towards NO 2 and CO 3 radicals is almost the same for piperidine,
pyrrolidine, and oxazolidine nitroxides, and does not depend on the pH or buffer concentration, namely
k o =
10 8
M 1 s 1
(Table 17.2). 20,22
k 1 k 2 /( k 1 +
k 2 )
=
(2.5
8.7)
×
Table17.2 Therateconstantk o (M −1 s −1 ) ofthereactionbetween
nitroxideand NO 2 orCO 3
asdeterminedbypulseradiolysis 15,20,22
NO 2
CO 3
Nitroxide
10 8
10 8
TEMPO
(7
.
1
±
0
.
2)
×
(4
.
0
±
0
.
1)
×
10 8
10 8
TEMPOL
(8
.
7
±
0
.
2)
×
(4
.
0
±
0
.
1)
×
10 8
10 8
4-amino-TEMPO
(5
.
5
±
0
.
2)
×
(3
.
9
±
0
.
1)
×
10 8
10 8
TEMPONE
(7
.
1
±
0
.
2)
×
(4.0
4.8)
×
4-N(CH 3 ) 3 + -TEMPO
10 8
10 8
(4
.
0
±
0
.
1)
×
(6
.
3
±
0
.
1)
×
10 8
10 8
3-CP
(7
.
1
±
0
.
2)
×
(4
.
0
±
0
.
1)
×
10 8
10 8
3-carboxy-proxyl
(4
.
9
±
0
.
2)
×
(2
.
4
±
0
.
1)
×
10 8
10 8
TCPO
(3
.
2
±
0
.
1)
×
(2
.
7
±
0
.
1)
×
10 8
10 8
CHDO
(2
.
5
±
0
.
1)
×
(2
.
6
±
0
.
1)
×
10 7
PTIO
(2
.
0
±
0
.
1)
×
ND
10 7
carboxy-PTIO
(1
.
5
±
0
.
1)
×
ND
ND - not determined.
Search WWH ::




Custom Search