Biomedical Engineering Reference
In-Depth Information
seg ( 1 ) =
[2, m 1 , I 1 ], seg ( 2 ) =
[4, m 2 , I 2 ], seg ( 3 ) =
[6, m 3 , I 3 ]
trq( 1 ) =
[0, 1, T 1 ], trq( 2 ) =
[1, 2, T 2 ], trq( 3 ) =
[2, 3, T 3 ],
frc( 1 ) =
[5, F ,0]
The steps that follow are to create displacement and velocity lists that
contain all points and use the results to obtain system Lagrangian and the gen-
eralized forces that are necessary for the Lagrange equations. The following
is a pseudo-code for the derivation procedures:
For p
1, ... , 6, derive displacement and velocity expressions for point
( p ) [Equations (8.16), (8.17)].
For
=
s = 1, ... , 3,
calculate
KE
and
PE
for
seg(s) and
update
the
Lagrangian [Equations (8.5), (8.23), (8.25)].
For t =
1, ... , 3, find the work done by torque trq(t ) and update system
work W [Equation (8.34)].
For f
1, find the work done by the force frc(f ) and update W [Equation
(8.34)].
For i
=
1, ... , 4, apply Lagrangian equations for coordinate q i [Equations
(8.8), (8.9)].
=
The intermediate results for the relevant parts of these steps are as follows:
1. Displacement vectors,
disp ( 1 ) = [ q 1 ,0]
disp ( 2 ) =
[ q 1 + r 1 cos (q 2 ) , r 1 sin (q 2 ) ]
disp ( 3 ) =
[ q 1 +
l 1 cos (q 2 ) , l 1 sin (q 2 ) ]
disp ( 4 ) =
[ q 1 +
l 1 cos (q 2 ) +
r 2 cos (q 3 ) , l 1 sin (q 2 ) +
r 2 sin (q 3 ) ]
disp ( 5 )
=
[ q 1 +
l 1 cos (q 2 )
+
l 2 cos (q 3 ) , l 1 sin (q 2 )
+
l 2 sin (q 3 ) ]
disp ( 6 )
=
[ q 1 +
l 1 cos (q 2 )
+
l 2 cos (q 3 )
+
r 3 cos (q 4 ) , l 1 sin (q 2 )
+
l 2 sin (q 3 )
+
r 3 sin (q 4 ) ]
2. Velocity vectors for selected points,
velo ( 2 ) = q 1 r 1 q 2 sin (q 2 ) , r 1 q 2 cos (q 2 )
velo ( 4 )
q 3 sin (q 3 ) ,
l 1 q 2 cos( q 2 ) + r 2 q 3 cos ( q 3 )]
velo ( 6 ) = [ q 1 l 1 q 2 sin (q 2 ) l 2 q 3 sin (q 3 ) r 3 q 4 sin (q 4 ) ,
l 1 q 2 cos (q 2 ) + l 2 q 3 cos (q 3 ) + r 3 q 4 cos (q 4 ) ]
=
[
q 1
˙
l 1 ˙
q 2 sin (q 2 )
r 1 ˙
Search WWH ::




Custom Search