Biomedical Engineering Reference
In-Depth Information
m 2 , I y =
m 2 , I z
m 2 , l d =
3 . 22 kg, I x
=
0 . 0138 kg
·
0 . 0024 kg
·
=
0 . 0138 kg
·
13 . 86 cm, l p =
60 Hz.
From the kinematic and kinetic measures presented in Tables 7.3 and 7.4,
we complete the analysis of frame 6: a x
18 . 15 cm, frame rate
=
7 . 029 m / s 2 , a Y
1 . 45 m / s 2 , a Z
=
=
=
. 348 m / s 2 . Refer to the three steps in Section 7.4.1.
Step 1
R XP
R XD =
ma X ,
0 R XP =−
119 . 04
+
3 . 22
×
7 . 029
=−
96 . 41 N
R YP
R YD
mg
=
ma Y ,
R YP =−
791 . 44
+
3 . 22
×
9 . 814
+
3 . 22
×
1 . 45
=− 755 . 17 N
R ZP R ZD = ma Z ,
R ZP =−
12 . 03
+
3 . 22
× ( . 348 ) =−
13 . 15 N
Step 2
θ 1 =− 0 . 1478 rad =− 8 . 468 , θ 2 =− 0 . 025 rad =− 1 . 432 ,
θ 3 =−
26 . 385
=−
0 . 4605 rad
cos θ 1 =
0 . 9891,
sin θ 1 =−
. 1476
cos θ 2 =
0 . 9997,
sin θ 2 =−
0 . 025
cos θ 3 = 0 . 8958,
sin θ 3 =− . 4444
Substituting these values in the [G to A] matrix [Equation (7.5)], we get:
c 2 c 3
s 3 c 1 +
s 1 s 2 c 3
s 1 s 3
c 1 s 2 c 3
0 . 8955
0 . 4363
0 . 0875
=
c 2 s 3
c 1 c 3
s 1 s 2 s 3
s 1 c 3 +
c 1 s 2 s 3
0 . 4443
0 . 8877
0 . 121
s 2
s 1 c 2
c 1 c 2
0 . 025
0 . 1473
0 . 9888
We can now transform the reaction forces from the global to the anatomical
axes system:
R xd
R yd
R zd
0 . 8955
0 . 4363
0 . 0875
R XD
R YD
R ZD
=
0 . 4443
0 . 8877
0 . 121
0 . 025
0 . 1473
0 . 9888
0 . 8955
0 . 4363
0 . 0875
119 . 04
237 . 65
=
=
0 . 4443
0 . 8877
0 . 121
791 . 44
754 . 00
0 . 025
0 . 1473
0 . 9888
12 . 03
125 . 50
R xp
R yp
R zp
0 . 8955
0 . 4363
0 . 0875
R XP
R YP
R ZP
=
0 . 4443
0 . 8877
0 . 121
0 . 025
0 . 1473
0 . 9888
0 . 8955
0 . 4363
0 . 0875
96 . 41
241 . 99
=
=
0 . 4443
0 . 8877
0 . 121
755 . 17
711 . 61
0 . 025
0 . 1473
0 . 9888
13 . 15
121 . 83
Search WWH ::




Custom Search