Graphics Reference
In-Depth Information
Shape operator:
S p =-D n ( p ): T p ( S ) Æ T p ( S )
Normal curvature of g at p in S :
k n,g ( p ) = k N n ( p ),
where N is the principal normal and k is the
curvature to g at p .
Choose orthonormal basis ( u 1 , u 2 ) for T p ( S ) so that
D n ( p )( u 1 ) =-k 1 u 1
(S p ( u 1 ) = k 1 u 1 )
D n ( p )( u 2 ) =-k 2 u 2
(S p ( u 2 ) = k 2 u 2 ).
and assume that k 1 ≥ k 2 .
Principal normal curvatures:
k 1 , k 2
(The maximum and minimum of Q II
on the unit circle of T p ( S ))
Principal normal directions:
u 1 , u 2
Gauss curvature:
K( p ) = determinant of D n ( p )
LN
-
-
M
2
K = k 1 k 2
=
2
EG
F
1
2
() =-
(
()
)
Mean curvature:
H
p
Trace d
n p
kk
1
+
EN
+-
-
GL
2
FM
2
H
=
=
(
)
2
2
2
EG
F
MF
-
-
LG
LF
-
-
ME
Weingarten equations:
n u
=
F
+
F
u
v
2
2
EG
F
EG
F
NF
-
-
MG
MF
-
-
NE
n v
=
F
+
F
u
v
2
2
EG
F
EG
F
k 2
Principal normal curvatures are roots of:
- 2Hk + K = 0
2
2
k
=+
HHK
-
,
k
=-
HHK
-
1
2
G ij
Christoffel symbols:
GE
-
2
FF
+
FE
GE
-
-
FG
2
GF
-
GG
-
FG
u
u
v
v
u
v
u
v
1
1
1
1
G
=
,
G
==
G
,
G
=
,
11
(
)
12
21
(
)
22
(
)
2
2
2
2
EG
-
F
2
EG
F
2
EG
-
F
2
EF
-
EE
+
FE
EG
-
-
FE
EG
-
2
FF
+
FFG
u
v
u
u
v
v
v
u
1 2
1 2
2
2 2
G
=
,
G
==
G
,
G
=
.
(
)
21
(
)
(
)
2
2
2
2
EG
-
F
2
EG
F
2
EG
-
F
 
Search WWH ::




Custom Search