Graphics Reference
In-Depth Information
Let K be a simplicial complex of dimension n and, as before, let n q = n q (K) be the
number of q-simplices in K. For each q, assume that we have chosen an orientation
for all the q-simplices in K and let
{
[][] [
]
}
q
q
q
+
S q
=
ss s
1
,
,...,
2
n
q
be the set of these oriented q-simplices of K. The set S +
will be a basis for the free
abelian group C q (K). Define integers e ij by the equation
n
q
[
] =
[]
Â
q
+
1
q
q
s
e
s
q
+
1
j
ij
i
i
=
1
and note that
q
q
Ï
Ì
Ó
¸
˝
˛
1
0
if is a face of
otherwise
s
s
e i q
i
j
+
1
=
.
j+1 ]. The qth
incidence matrix E q , 0 £ q < dim K, of K is defined to be the (n q ¥ n q+1 )-matrix
The integer e ij is called the incidence number of [s
i ] and [s
Definition.
[
]
[
] [
]
q
+
1
q
+
1
q
+
+
1
s
s
L
s
1
2
n
q
1
[]
[]
q
q
q
q
Ê
ˆ
e
e
L
e
s
s
11
12
1n
1
q+1
= () =
Á
Á
Á
Á
˜
˜
˜
˜
E q
q
e
q
q
q
q
L
e
e
e
ij
2
21
22
2n
q+1
M
M
M OM
L
[
]
q
s
q
q
q
e
e
e
Ë
¯
n
q
n1
n2
nn
q
q
q
q+1
whose rows and columns are indexed by the elements of S + and S q+1 , respectively.
Suppose that K =· v 0 v 1 v 2 Ò and that we have chosen the S +
7.2.5.1. Example.
as
follows:
+
= {
}
S
S
S
vvv
vv
,, ,
,
012
0
+
= [
{
] [
] [
]
}
vv
,
vv
,
01
12
0 2
1
+
= [
{
]
}
vvv
.
012
2
The incidence matrices of K are then given by
[
]
[
]
[
]
[
]
vvv
vv
vv
vv
012
01
12
0 2
[
]
vv
vv
vv
+
+
-
1
1
1
v
v
v
+
1
0
-
1
Ê
ˆ
Ê
ˆ
01
0
1
0
E
=
and
E
=
Á
Á
˜
˜
Á
Á
˜
˜
[
]
-
1
-
+
1
0
12
1
[
]
Ë
¯
Ë
¯
.
0
1
+
1
02
2
Search WWH ::




Custom Search