Graphics Reference
In-Depth Information
In this case,
(
)
(
[
]
) =
(
[
()() ◊◊◊ ()
]
)
o
f
vv
◊◊◊
v
f
v
f
v
f
v
q
#
q
01
q
q
0
1
q
q
i
Â
= ()() ◊◊◊ () ◊◊◊ ()
[
]
1
f
v
f
v
f
v
0
i
q
i
=
0
q
i
Â
[
ˆ
]
= ()
1
f
vvv
◊◊◊
◊◊◊
#
0
i
q
q
-
1
i
=
0
q
Ê
Á
ˆ
˜
i
Â
[
ˆ
]
=
f
- ()
1
vvv
◊◊◊
◊◊◊
#
0
i
q
q
-
1
i
=
0
= (
)
[
]
f
o
(
vv
◊◊◊
v
)
.
#
q
01
q
q
-
1
Case 2.
The vertices f( v 1 ), f( v 2 ),..., and f( v q ) are all distinct, but f( v 0 ) = f( v 1 ).
The assumption f( v 0 ) = f( v 1 ) implies that
(
)
(
[
]
) =
() =
o
f
vv
◊◊◊
v
00
qq
#
01
q
q
and
q
Ê
Á
ˆ
˜
(
)
Â
i
(
[
]
) = ()
()
[
ˆ
]
f
o
vv
◊◊◊
v
f
1
v
◊◊◊
v
◊◊◊
v
#
q
01
q
#
0
i
q
q
-
1
q
-
1
i
=
0
q
Â
i
[
]
= ()()
ˆ
1
f
vvv
◊◊◊
◊◊◊
#
0
i
q
q
-
1
i
=
0
0
1
= () ()() ◊◊◊
[
(()
] + ()()() ◊◊◊ ()
[
]
1
f
vv
f
f
v
1
f
vv
f
f
v
1
2
q
0
2
q
2
q
+ ()
+◊◊◊+ ()
10
1 0
[
()( ) ◊◊◊ ()
] -
[
()() ◊◊◊ ()
]
=
f
vv
f
f
v
f
v v
f
f
v
1
2
q
0
2
q
=
0
.
Case 3.
The vertices f( v 0 ), f( v 1 ),..., f( v i ),..., f( v q ) are all distinct, but f( v i ) = f( v j )
for some i < j.
This case follows easily from Case 2 because [ v 0 v 1 ··· v q ] =±[ v i v j v 0 v 1 ··· ˆ i ··· ˆ j
··· v q ].
Case 4.
There exist distinct indices i, j, and k, such that f( v i ) = f( v j ) = f( v k ).
In this case,
(
)
(
[
]
) =
() =
o
f
vv
◊◊◊
v
00
qq
#
01
q
q
and
Search WWH ::




Custom Search