Information Technology Reference
In-Depth Information
A fundamental theorem of higher order probabilities (in discrete time)
If we set P 0 (E) P(E), then P t (E) = P(E) . P t-1 (E) . [P{(U t-1 = U t )|E}/P(U t-1 = U t )] for t = 1, 2,3, ..., n
Proof
P 1 (E) = P{P 0 (E)} = P(E) . [P{(U 0 = U 1 )|E}/P(U 0 = U 1 )]
from lemma 2
P 2 (E) = P{P 1 (E)} = P(E) . P 1 (E) . [P{(U 1 = U 2 )|E}/P(U 1 = U 2 )]
.. from lemma 3
P 3 (E) = P[{E | (U 0 = U 1 )} ∩ {E|(U 1 = U 2 )} ∩ {E|(U 2 = U 3 )}]
= P[[{E | (U 0 = U 1 )} ∩ {E|(U 1 = U 2 )}] ∩ {E|(U 2 = U 3 )}]
= P 2 (E) . P{E|(U 2 = U 3 )}
= P(E) . P 2 (E) . [P{(U 2 = U 3 )|E}/P(U 2 = U 3 )
P 4 (E) = P[{E | (U 0 = U 1 )} ∩ {E|(U 1 = U 2 )} ∩ {E|(U 2 = U 3 )} ∩ {E|(U 3 = U 4 )}]
= P[[{E | (U 0 = U 1 )} ∩ {E|(U 1 = U 2 )} ∩ {E|(U 2 = U 3 )}] ∩ {E|(U 3 = U 4 )}]
= P 3 (E) . P{E|(U 3 = U 4 )}
= P(E) . P 3 (E) . [P{(U 3 = U 4 )|E}/P(U 3 = U 4 )]
Extending to the (t-1)-th term, we can therefore write:
P t-1 (E) = P(E) . P t-2 (E) . [P{(U t-2 = U t-1 )|E}/P(U t-2 = U t-1 )
(1)
The expression for the t-th term is derived from (1) as follows:
P t (E) = P(E) . P (t-2)+1 (E) . [P{(U (t-2)+1 =U t )|E}/P(U (t-2)+1 = U t )
= P(E) . P t-1 (E) . [P{(U t-1 =U t )|E}/P(U t-1 =U t )
(2)
However we may also write:
P t (E)=P[{E | (U 0 = U 1 )}∩{E|(U 1 = U 2 )}∩{E|(U 2 = U 3 )}∩{E|(U 3 = U 4 )}∩...∩{E|(U t-1 = U t )}]
=P[[{E|(U 0 =U 1 )}∩{E|(U 1 =U 2 )}∩{E|(U 2 =U 3 )}∩{E|(U 3 =U 4 )}∩...∩{E|(U t-2 =U t-1 )]∩{E|(U t-1 = U t )}]
= P t-1 (E) . P{E|(U t-1 = U t )}
= P t-1 (E) . P(E) . [P{(U t-1 =U t )|E}/P(U t-1 =U t )]
(3)
As (2) is identical to (3); by principle of mathematical induction the general case is proved for t= n.
QED
Obviously then, if P(U t-1 =U t ) = P{ (U t-1 =U t )|E} , for all t = 1, 2, 3, ..., n; we will end up with
P n (E) = [ P(E) ] n which makes this approach to H-O probability fully consistent with classical
probability theory and in fact a very natural extension thereof if one sees the fundamentally
time-dynamic characteristic of U.
Search WWH ::




Custom Search