Information Technology Reference
In-Depth Information
First it can be proved by induction the equality
1
q βχ A ,1
1
q βχ A )=
(
( βχ A ,1
− βχ A )
qm
m
holding for every q
N . Therefore
1
q βχ A ,1
1
q βχ A )=
1
q m
m
(
( βχ A ,1
βχ A )
p
q βχ A ,1
p
q βχ A )=
p
q m
(
( βχ A ,1
− βχ A )
m
,
hence (3) holds for every rational
α
. Let
α
R ,
α [
0, 1
]
. Take
α n
Q ,
α n
α
. Then
α n χ A αχ A ,1
α n χ A
1
αχ A .
Therefore
m
( αβχ A ,1
αβχ A )=
lim
n
m
( α n βχ A ,1
α n βχ A )=
=
( βχ A ,1
− βχ A )= α
( βχ A ,1
− βχ A )
lim
n
α n m
m
,
β =
hence, (3) is proved, too. Particularly, if we give
1, then
( αχ A ,1
αχ A
)= α
( χ A ,1
χ A
)
m
m
.
Let f :
Ω [
0, 1
]
be simple,
S
-measurable, i.e.
n
i = 1 α i χ A i , A i ∈S ( i = 1, ., , , n ) , A i A j = ( i = j ) .
f
=
Combining (2), (3), and the definition of P we obtain
n
i = 1 m ( α i χ A i ,1 α i χ A i )=
(
f ,1
f
)=
m
n
i = 1 α i m ( χ A i ,1 − χ A i )=
=
n
i = 1 α i P ( A i )=
=
fdP ,
Ω
hence
(
)=
m
f ,1
f
fdP ,
Ω
Ω [
]
Ω [
]
S
for any f :
0, 1
simple. If f :
0, 1
is an arbitrary
-measurable function, then
(
)
there exists a sequence
f n
of simple measurable functions such that f n
f .
Evidently,
1
f n
1
f . Therefore
m
(
f ,1
f
)=
lim
n
m
(
f n ,1
f n
)=
lim
n
f n dP
=
fdP ,
Ω
Ω
 
Search WWH ::




Custom Search