Information Technology Reference
In-Depth Information
8. Acknowledgment
This research was supported in part by CONACYT and DGEST
9. References
Ali, S. & Smith, K. (2006). On learning algorithm selection for classification. Applied Soft
Computing , Vol. 6, No. 2, (January 2006), pp. 119-38.
Aguirre, M. (2008). Algoritmo de Búsqueda Semántica para Redes P2P Complejas . Master's thesis,
División de Estudio de Posgrado e Investigación del Instituto Tecnológico de
Ciudad Madero, Tamaulipas, México.
Azpeitia, D. (2011). Critical Factors for Success of a Viral Marketing Campaign of Real-Estate
Sector at Facebook: The strength of weak learnability. Proceedings of the HIS
Workshop at MICAI
Beck, J. & Freuder, E. (2004). Simple Rules for Low-Knowledge Algorithm Selection.
Proceedings of the 1st International Conference on Integration of IA and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems , Nice, France, April
2004, J. Regin and M. Rueher (Ed.). Springer-Verlag Vol. 3011, pp. 50-64.
Brazdil, P. B., Soares C., & Pinto, D. C. J. (2003). Ranking Learning Algorithms: Using IBL
and Meta-Learning on Accuracy and Time Results. Machine Learning , Vol. 50, No. 3,
pp. 251-277, ISSN: 08856125
Brewer, E. (1995). High-Level Optimization Via Automated Statistical Modeling. Proceedings
of Principles and Practice of Parallel Programming , Santa Barbara, CA, July 1995, ACM
Press, New York, USA, pp. 80-91
Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. & Woodward, J. (2009). Exploring
hyper-heuristic methodologies with genetic programming. In: Computational
Intelligence : Collaboration, Fusion and Emergence, Intelligent Systems Reference
Burke, K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. & Woodward, R. (2010). A
Classification of Hyper-heuristic Approaches, In: International Series in Operations
Research & Management Science , Gendreau, M. and Potvin, J.Y. pp.(449). Springer
Science+Business Media, ISBN 978-1-4419-1663-1, NY, USA
Cai, H., Hu X., Lü Q., & Cao, Q. (2009). A novel intelligent service selection algorithm and
application for ubiquitous web services environment. Expert Systems with
Applications , Vol. 36, No. 2, Part 1, pp. 2200-2212, ISSN: 09574174
Cruz, L. (1999). Automatización del Diseño de la Fragmentación Vertical y Ubicación en Bases de
Datos Distribuidas usando Métodos Heurísticos y Exactos . Master's thesis, Instituto
Tecnológico y de Estudios Superiores de Monterrey, México.
Cruz, L., Gómez, C., Aguirre, M., Schaeffer, S., Turrubiates, T., Ortega, R. & Fraire,H.(2008).
NAS algorithm for semantic query routing systems in complex networks. In:
International Symposium on Distributed Computing and Artificial Intelligence 2008/
Advances in Soft Computing 2009 . Corchado J., Rodríguez S., Llinas J. & Molina J.,
pp. (284-292), Springer, Berlin /Heidelberg, ISBN 978-3-540-85862-1, DOI
Czogalla, J. & Fink, A. (2009). Fitness Landscape Analysis for the Resource Constrained
Project Scheduling Problem. Lecture Notes in Computer Science, Learning and
Intelligent Optimization , Vol. 5851, pp. 104-118
Dorigo, M. & Stützle, T. (2004). Ant Colony Optimization . MIT Press, Cambridge, MA., ISBN
0-262-04219-3, EUA
Search WWH ::

Custom Search