Image Processing Reference
In-Depth Information
23.
Calamante, F., Gadian, D.G., and Connelly, A. (2000). Delay and dispersion effects
in dynamic susceptibility contrast MRI: simulations using singular value decom-
position. Magn. Reson. Med . 44: 466-473.
24.
Calamante, F., Gadian, D.G., and Connelly, A. (2002). Quantification of perfusion
using bolus tracking magnetic resonance imaging in stroke: assumptions, limita-
tions, and potential implications for clinical use. Stroke 33: 1146-1151.
25.
Alsop, D.C. and Detre, J.A. (1996). Reduced transit-time sensitivity in noninvasive
magnetic resonance imaging of human cerebral blood flow. J. Cereb. Blood Flow
Metab . 16: 1236-1249.
26.
van Osch, M.J., Vonken, E.J., Wu, O., Viergever, M.A., van der Grond, J., and
Bakker, C.J. (2003). Model of the human vasculature for studying the influence
of contrast injection speed on cerebral perfusion MRI. Magn. Reson. Med . 50:
614-622.
27.
Larson, K.B., Perman, W.H., Perlmutter, J.S., Gado, M.H., and Zierler, K.L.
(1994). Tracer-kinetic analysis for measuring regional cerebral blood flow by
dynamic nuclear magnetic resonance imaging. J. Theor. Biol . 170: 1-14.
28.
Ostergaard, L., Chesler, D.A., Weisskoff, R.M., Sorensen, A.G., and Rosen, B.R.
(1999). Modeling cerebral blood flow and flow heterogeneity from magnetic
resonance residue data. J. Cereb. Blood Flow Metab . 19: 690-699.
29.
Kroll, K., Wilke, N., Jerosch-Herold, M., Wang, Y., Zhang, Y., Bache, R.J., and
Bassingthwaighte, J.B. (1996). Modeling regional myocardial flows from residue
functions of an intravascular indicator. Am. J. Physiol . 271: H1643-H1655.
30.
Smith, A.M., Grandin, C.B., Duprez, T., Mataigne, F., and Cosnard, G. (2000).
Whole brain quantitative CBF and CBV measurements using MRI bolus tracking:
comparison of methodologies. Magn. Reson. Med . 43: 559-564.
31.
De Nicolao, G., Sparacino, G., and Cobelli, C. (1997). Nonparametric input
estimation in physiological systems: Problems, methods, and case studies. Auto-
matica 33: 851-870.
32.
Murase, K., Shinohara, M., and Yamazaki, Y. (2001). Accuracy of deconvolution
analysis based on singular value decomposition for quantification of cerebral blood
flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging.
Phys. Med. Biol . 46: 3147-3159.
33.
Liu, H.L., Pu, Y., Liu, Y., Nickerson, L., Andrews, T., Fox, P.T., and Gao, J.H.
(1999). Cerebral blood flow measurement by dynamic contrast MRI using singular
value decomposition with an adaptive threshold. Magn. Reson. Med . 42: 167-172.
34.
Wirestam, R., Andersson, L., Ostergaard, L., Bolling, M., Aunola, J.P., Lindgren,
A., Geijer, B., Holtas, S., and Stahlberg, F. (2000). Assessment of regional cerebral
blood flow by dynamic susceptibility contrast MRI using different deconvolution
techniques. Magn. Reson. Med . 43: 691-700.
35.
Sourbron, S., Luypaert, R., Van Schuerbeek, P., Dujardin, M., Stadnik, T., and Osteaux,
M. (2004). Deconvolution of dynamic contrast-enhanced MRI data by linear inversion:
choice of the regularization parameter. Magn. Reson. Med . 52: 209-213.
36.
Wu, O., Ostergaard, L., Weisskoff, R.M., Benner, T., Rosen, B.R., and Sorensen,
A.G. (2003). Tracer arrival timing-insensitive technique for estimating flow in MR
perfusion-weighted imaging using singular value decomposition with a block-
circulant deconvolution matrix. Magn. Reson. Med . 50: 164-174.
37.
Smith, M.R., Lu, H., Trochet, S., and Frayne, R. (2004). Removing the effect of
SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn.
Reson. Med . 51: 631-634.
Search WWH ::




Custom Search