Image Processing Reference
In-Depth Information
20.
Baumgartner, R., Windischberger, C., and Moser, E. (1998). Quantification in
functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis.
Magn. Reson. Imaging . 16: 115-125.
21.
Fadili, M. J., Ruan, S., Bloyet, D., and Mazoyer, B. (2000). A multistep unsupervised
fuzzy clustering analysis of fMRI time series. Human Brain Mapping 10: 160-178.
22.
Fischer, H. and Hennig, J. (1999). Neural network-based analysis of MR time
series. Magn. Reson. Med . 41: 124-131.
23.
Ngan, S.-C. and Hu, X. (1999). Analysis of functional magnetic resonance imaging
data using self-organizing mapping with spatial connectivity. Magn. Reson. Med .
41: 939-946.
24.
Dimitriadou, E., Barth, M., Windischberger, C., Hornik, K., and Moser, E. (2004). A
quantitative comparison of functional cluster analysis. Artif. Intell. Med. 31: 57-71.
25.
Scarth, G., McIntyre, M., Wowk, B., and Somorjai, R. (1995). Detection of novelty
in functional images using fuzzy clustering. in Proc. of the Annual Meeting of the
Soc. of Magn. Reson. and Europ. Soc. for Magn. Reson. in Med. and Biol . Nice,
France, 1: 238.
26.
Toft, P., Hansen, L.K., Nielsen, F.Å., Goutte, C., Strother, S., Lange, N., Mørch,
N., Svarer, C., Paulson, O.B., Savoy, R., Rosen, B., Rostrup, E., and Born, P.
(1997). On clustering of fMRI time series. in Third International Conference on
Functional Mapping of the Human Brain. Neuroimage . 3(3): S456.
27.
Mitra, P.P., Ogawa, S., Hu, X., and Ugurbil, K. (1997). The nature of spatiotem-
poral changes in cerebral hemodynamics as manifested in functional magnetic
resonance imaging. Magn. Reson. Med . 37: 511-518.
28.
Bullmore, E.T., Rabe-Hesketh, S., Morris, R.G., Williams, S.C.R., Gregory, L.,
Gray, J. A., and Brammer, M.J. (1996). Functional magnetic resonance image
analysis of a large-scale neurocognitive network. Neuroimage . 4: 16-33.
29.
Sychra, J.J., Bandettini, P.A., Bhattacharya, N., and Lin, Q. (1994). Synthetic
images by subspace transforms I. Principal component images and related filters.
Med. Phys. 21(2): 193-201.
30.
Dodel, S., Herrmann, J.M., and Geisel, T. (2000). Localization of brain activity-
blind separation for fMRI data. Neurocomputing . 32-33: 701-708.
31.
Andersen, A. H., Gash, D. M., and Avison, M. J. (1999). Principal component
analysis of the dynamic response measured by fMRI: a generalized linear systems
framework. Magn. Reson. Imaging . 17(6): 795-815.
32.
Backfrieder, W., Baumgartner, R., Sámal, M., Moser, E., and Bergmann, H. (1996).
Quantification of intensity variations in functional MR images using rotated prin-
cipal components. Phys. Med. Biol . 41: 1425-1438.
33.
Calhoun, V., Adali, T., Hansen, L.K., Larsen, J., and Pekar, J. (2003). ICA of
functional MRI data: an overview. In: Fourth Int. Symp. on ICA and BSS. Nara,
Japan, 281-288. http://www.kecl.ntt.co.jp/icl/signal/ica2003/cdrom/data/0219.pdf .
(accessed 2004 November 29).
34.
McKeown, M.J., Makeig, S., Brown, G., Jung, T.-P., Kindermann, S.S., Bell, A.J.,
and Sejmowski, A.J. (1998). Analysis of fMRI data by blind separation into
independent spatial components. Human Brain Mapping 6: 160-188.
35.
McKeown, M.J. and Sejnowski, T.J. (1998). Independent component analysis
of fMRI data: examining the assumptions, Human Brain Mapping 6: 368-372.
36.
Biswal, B.B. and Ulmer, J.L. (1999). Blind source separation of multiple signal
sources of fMRI data sets using independent component analysis. J. Comput.
Assist. Tomogr. 23(2): 265-271.
Search WWH ::




Custom Search