Image Processing Reference
In-Depth Information
36.
Manduca, A., Smith, J.A., Muthupillai, R., Rossman, P.J., Greenleaf, J.F., and
Ehman, R.L. (1997). Image analysis techniques for magnetic resonance elastog-
raphy [abstr]. Proc. ISMRM 5: 1905.
37.
Kruse, S.A., Smith, J.A., Lawrence, A.J., Dresner, M.A., Manduca, A., Greenleaf,
J.F., and Ehman, R.L. (2000). Tissue characterization using magnetic resonance
elastography: Preliminary results. Phys. Med. Biol. 45: 1579-1590.
38.
Muthupillai, R., Rossman, P.J., Greenleaf, J.F., Riederer, S.J., and Ehman, R.L.
(1996). MRI visualization of acoustic strain waves: Effect of linear motion [abstr].
Proc. ISMRM 4: 1515.
39.
Muthupillai, R. and Ehman, R.L. (1997). Amplitude modulated cyclic gradient
waveforms: Applications in MRE [abstr]. Proc. ISMRM 6: 1904.
40.
Auld, B.A. (1990). Acoustic Fields and Waves in Solids , Malabar, FL: Krieger
Publishing Company.
41.
Kallel, F. and Bertrand, M. (1996). Tissue elasticity reconstruction using linear
perturbation method. IEEE Trans. Med. Imaging 15(3): 299-313.
42.
Oliphant, T.E., Manduca, A., Ehman, R.L., and Greenleaf, J.F. (2001). Complex-
valued stiffness reconstruction for magnetic resonance elastography by algebraic
inversion of the differential equation. Magn. Reson. Med. 45: 299-310.
43.
Oliphant, T.E. (2001). Direct Methods for Dynamic Elastography Reconstructions:
Optimal Inversion of the Interior Helmholtz Problem. Ph.D. thesis, Mayo Graduate
School, Rochester, MN.
44.
Catheline, S., Wu, F., and Fink, M. (1999). A solution to diffraction biases in
sonoelasticity: The acoustic impulse technique. J. Acoust. Soc. Am. 105: 2941-2950.
45.
Knutsson, H., Westin, C.J., and Granlund, G. (1994). Local multiscale frequency
and bandwidth estimation. Proc. IEEE Intl. Conf. Image Proc. 1: 36-40.
46.
Manduca, A., Muthupillai, R., Rossman, P.J., Greenleaf, J.F., and Ehman, R.L.
(1996). Image processing for magnetic resonance elastography. SPIE Med. Imag-
ing. 2710: 616-623.
47.
Romano, A.J., Shirron, J.J., and Bucaro, J.A. (1998). On the noninvasive determi-
nation of material parameters from a knowledge of elastic displacements: Theory
and numerical simulation. IEEE Trans. Ultrasonics Ferroelect. Freq. Control 45:
751-759.
48.
Romano, A.J., Bucaro, J.A., Ehman, R.L., and Shirron, J.J. (2000). Evaluation of a
material parameter extraction algorithm using MRI-based displacement measure-
ments. IEEE Trans. Ultrasonics Ferroelect. Freq. Control 47: 1575-1581.
49.
Oliphant, T.E., Manduca, A., Dresner, M.A., Ehman, R.L., and Greenleaf, J.F.
(2001). Adaptive estimation of shear modulus for MR elastography [abstr]. Proc.
ISMRM 9: 1642.
50.
Van Houten, E.E.W., Paulsen, K.D., Miga, M.I., Kennedy, F.E., and Weaver, J.B.
(1999). An overlapping subzone technique for MR-based elastic property recon-
struction. Magn. Reson. Med. 42: 779-786.
51.
Van Houten, E.E.W., Miga, M.I., Weaver, J.B., Kennedy, F.E., and Paulsen, K.D.
(2001). Three-dimensional subzone-based reconstruction algorithm for MR elas-
tography. Magn. Reson. Med. 45: 827-837.
52.
Braun, J., Buntkowsky, G., Bernarding, J., Tolxdorff, T., and Sack, I. (2001).
Simulation and analysis of magnetic resonance elastography wave images using
coupled harmonic oscillators and Gaussian local frequency estimation. Magn.
Reson. Imaging. 19: 703-713.
Search WWH ::




Custom Search