Image Processing Reference
In-Depth Information
REFERENCES
1.
Duck, F.A. (1990). Physical Properties of Tissues — A Comprehensive Reference
Book . 6th ed. Sheffield, England: Academic Press.
2.
Sarvazyan, A. (1993). Shear acoustic properties of soft biological tissues in med-
ical diagnostics [abstr]. J. Acoust. Soc. Am. Proc. 125th Mtg . 93(2): 2329.
3.
Krouskop, T.A., Wheller, T.M., Kallel, F., Garra, B.S., and Hall, T. (1998). Elastic
moduli of breast and prostate tissues under compression. Ultrasound Imaging .
20(4): 260-274.
4.
Sarvazyan, A., Goukassian, D., and Maevsky, G. (1994). Elasticity imaging as a
new modality of medical imaging for cancer detection. Proc. Intl. Workshop
Interaction Ultrasound with Biol. Media pp. 69-81.
5.
Sarvazyan, A., Rudenko, O.V., Swanson, S.D., Fowlkes, J.B., and Emelianov, Y.
(1998). Shear-wave elasticity imaging: A new ultrasonic technology of medical
diagnostics. Ultrasound Med. Biol. 24(9): 1419-1235.
6.
Gao, L., Parker, K.J., Lerner, R.M., and Levinson, S.F. (1996). Imaging of the
elastic properties of tissue — a review. Ultrasound Med. Biol. 22: 959-977.
7.
Physics in Medicine and Biology (June 2000).
8.
Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., and
Ehman, R.L. (1995). Magnetic resonance elastography by direct visualization of
propagating acoustic strain waves. Science 269: 1854-1857.
9.
Muthupillai, R., Rossman, P.J., Lomas, D.J., Greenleaf, J.F., Riederer, S.J., and
Ehman, R.L. (1996). Magnetic resonance imaging of transverse acoustic strain
waves. Magn. Reson. Med. 36: 266-274.
10.
Goss, S.A., Johnston, R.L., and Shnol, S.E. (1978). Comprehensive compilation
of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64(2):
423-457.
11.
Burlew, M.M., Madsen, E.L., Zagzebski, J.A., Banjavic, R.A., and Sum, S.W.
(1980). A new ultrasound tissue-equivalent material. Radiology 134(2): 517-520.
12.
Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., and Li, X. (1991). Elastography:
A quantitative method for imaging the elasticity of biological tissues. Ultrasound
Imaging 13: 111-134.
13.
O'Donnell, M., Skovoroda, A.R., Shapo, B.M., and Emellanov, S.Y. (1994). Inter-
nal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans.
Ultrasonics Ferroelect. Freq. Control 41: 314-325.
14.
Cespedes, I., Ophir, J., Ponnekanti, H., and Maklad, N. (1993). Elastography:
elasticity imaging using ultrasound with application to muscle and breast in vivo .
Ultrasound Imaging 15: 73-88.
15.
Garra, B.S., Cespedes, E.I., Ophir, J., Spratt, S.R., Zuurbier, R.A., Magnant, C.M.,
and Pennanen, M.F. (1997). Elastography of breast lesions: Initial clinical results.
Radiology 202(1): 79-86.
16.
Gao, L., Parker, K.J., and Slam, S.K. (1995). Sonoelasticity imaging: Theory and
experimental verification. J. Acoust. Soc. Am. 97: 3875-3885.
17.
Lerner, R.M., Huang, S.R., and Parker, K.J. (1990). Sonoelasticity images derived
from ultrasound signals in mechanically vibrated tissues. Ultrasound Med. Biol.
16: 237-239.
18.
Parker, K. and Lerner, R. (1992). Sonoelasticity of organs: Shear waves ring a
bell. J. Ultrasound. Med. 11: 387-392.
Search WWH ::




Custom Search