Image Processing Reference
In-Depth Information
258.
Noble, D. (2002). Modelling the heart: insights, failures and progress. Bioessays,
24(12):1155-63.
259.
Pullan, A., Buist, M., Sands, G., Cheng, L., and Smith, N. (2003). Cardiac elec-
trical activity-from heart to body surface and back again. J Electrocardiol. 36
(suppl.): 63-67.
260.
Bassingthwaighte, J. and Vinnakota, K. (2004). The computational integrated
myocyte: a view into the virtual heart. Ann. NY Acad. Sci . 1015: 391-404.
261.
Winslow, R., Helm, P., Baumgartner, W., Peddi, S., Ratnanather, T., McVeigh, E.,
and Miller, M. (2002). Imaging-based integrative models of the heart: closing the
loop between experiment and simulation. in Angel [262], 129-41.
262.
Angel, K., Ed. (2002). In Silico Simulation of Biological Processes . No. 247 in
Novartis Foundation Symposium. Wiley.
263.
Taylor, C. and Draney, M. (2004). Experimental and computational methods in
cardiovascular fluid mechanics. Annu. Rec. Fluid Mech . 36: 197-231.
264.
Smye, S. and Clayton, R. (2002). Mathematical modelling for the new millennium:
medicine by numbers. Med. Eng. Phys . 24(9): 565-574.
265.
McCulloch, A.D., Huber, G. (2002) . Integrative biological modelling in silico. in
Angel [262], 4-19.
266.
Greenbaum, R. and Gibson, D. (1981). Regional non-uniformity of left ventricular
wall movement. Br. Heart J . 45(1): 29-34.
267.
Shapiro, E., Marier, D.L., St. John Sutton, M.G., and Gibson, D.G. (1981).
Regional non-uniformity of wall dynamics in normal left ventricle. Br. Heart J .
45(3): 264-270.
268.
Pandian, N., Skorton, D., Collins, S., Falsetti, H., Burke, E., and Kerber, R. (1983).
Heterogeneity of left ventricular segmental wall thickening and excursion in 2-
dimensional echocardiograms of normal human subjects. Am. J. Cardiol . 51(10):
1667-1673.
269.
Besl, P. and Jain, R. (1986). Invariant surface characteristics for 3-D object rec-
ognition in range images. Comput. Vis. Graph and Image Process . 33(1): 33-80.
270.
Clarysse, P., Friboulet, D., and Magnin, I. (1997). Tracking geometrical descriptors
on 3-D deformable surfaces: application to the left-ventricular surface of the heart.
IEEE Trans. Med. Imaging . 16(4): 392-404.
271.
Koenderink, J. and van Doorn, A. (1992). Surface shape and curvature scales.
Image Vis Comput . 10(8): 557-565.
272.
Dorai, C. and Jain, A.K. (1997). Shape spectrum-based view grouping and matching
of 3-D free-form objects. IEEE Trans. Pattern Anal. Machine Intell. 19(10):1139-46.
273.
Do Carmo, M.P. (1976). Differential Geometry of Curves and Surfaces . New
Jersey: Prentice-Hall.
274.
Azhari, H., Grenadier, E., Dinnar, U., Beyar, R., Adam, D., Marcus, M., and
Sideman, S. (1989). Quantitative characterization and sorting of three-dimensional
geometries: Application to left ventricles in vivo. IEEE Trans. Med. Imaging .
36(3): 322-332.
275.
Azhari, H., Sideman, S., Beyar, R., Grenadier, E., and Dinnar, U. (1987). An
analytical descriptor of three-dimensional geometry: application to the analysis
of the left ventricle shape and contraction. IEEE Trans. Biomed. Eng . 34(5):
345-355.
276.
Azhari, H., Gath, I., Beyar, R., Marcus, M., and Sideman, S. (1991). Discrimina-
tion between healthy and diseased hearts by spectral decomposition of their left
ventricular 3-D geometry. IEEE Trans. Med. Imaging . 10(2): 207-215.
Search WWH ::




Custom Search