Image Processing Reference
In-Depth Information
99.
Wieringa, H.J., Peters, M.J., and Lopes da Silva, F. (1993). The estimation of a
realistic localization of dipole layers within the brain based on functional (EEG,
MEG) and structural (MRI) data: a preliminary note. Brain Topogr . 5(4):
327-330.
100.
Horn, B.K.P. (April 1987). Closed-form solution of absolute orientation using unit
quaternions. J. Opt. Soc. Amer . 4(4): 629-642.
101.
Horn, B.K.P., Hilden, H., and Negahdaripour, S. (1998). Closed-form solution of
absolute orientation using orthonormal matrices. J. Opt. Soc. Amer . 5(7).
102.
Nielsen, F.A. Bibliography of segmentation in neuroimaging. URL: http://www.
imm.dtu.dk/_fn/bib/ Nielsen2001BibSegmentation/ .
103.
Poupon, F. (December 1999), Parcellisation Systematique du Cerveau en Volumes
D'internet. Le Cas Des Structures Profondes. Ph.D. thesis, INSA Lyon, Lyon,
France. URL: ftp://ftp.cea.fr/pub/dsv/anatomist/ papers/fpoupon-thesis99.pdf.
104.
Dale, A.M., Fischl, B., and Sereno, M.I. (1999). Cortical surface-based analysis.
I. Segmentation and surface reconstruction. NeuroImage 9(2): 179-194.
105.
Shattuck, D.W. and Leahy, R.M. BrainSuite: An automated cortical surface iden-
tification tool. Med Im Anal . In press .
106.
Castellano, S.A. (September 1999). The Folding of the Human Brain: From Shape
to Function. Ph.D. thesis, University of London, Division of Radiological Sciences
and Medical Engineering, King's College, London.
107.
Nunez, P.L. (1981). Electric Fields of the Brain: The Neurophysics of EEG . New
York: Oxford University Press.
108.
Liu, A.K., Belliveau, J.W., and Dale, A.M. (1998). Spatiotemporal imaging of
human brain activity using functional MRI constrained magnetoencephalography
data: Monte Carlo simulations. Proc. Natl. Acad. Sci. USA 95(15): 8945-8950.
109.
Hillebrand, A. and Barnes, G.R. (2003). The use of anatomical constraints with
MEG beamformers. NeuroImage . 20(4): 2302-2313.
110.
Hamalainen, M.S. and Sarvas, J. (1989). Realistic conductivity geometry model
of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed.
Eng . 36(2): 165-171.
111.
Marin, G., Guerin, C., Baillet, S., Garnero, L., and Meunier, G. (1998). In_uence
of skull anisotropy for the forward and inverse problems in EEG: simulation studies
using FEM on realistic head models. Hum. Brain Mapp . 6: 250-269.
112.
Wolters, C.H., Anwander, A., Koch, M.A., Reitzinger, S., Kuhn, M., and SvensĀ“en,
M. (2001). Infiuence of head tissue conductivity anisotropy on human EEG and
MEG using fast high resolution finite element modeling, based on a parallel alge-
braic multigrid solver. Forschung und wissenschaftliches Rechnen .
113.
Miller, C.E. and Henriquez, C.S. (1990). Finite element analysis of bioelectric
phenomena. Crit. Rev. Biomed. Eng . 18(3): 207-233.
114.
Saleheen, H.I. and Ng, K.T. (1997). New finite difference formulations for general
inhomogeneous anisotropic bioelectric problems. IEEE Trans. Biomed. Eng .
44(9): 800-809.
115.
Geddes, L.A. and Baker, L.E. (1967). The specific resistance of biological mate-
rial-a compendium of data for the biomedical engineer and physiologist. Med.
Biol. Eng . 5(3): 271-293.
116.
Goncalves, S.I., de Munck, J.C., Verbunt, J.P., Bijma, F., Heethaar, R.M., and
Lopes da Silva, F. (2003). In vivo measurement of the brain and skull resistivities
using an EIT-based method and realistic models for the head. IEEE Trans. Biomed.
Eng . 50(6): 754-767.
Search WWH ::




Custom Search