Biology Reference
In-Depth Information
Wool, I.G., 1979. The structure and function of eukaryotic ribosomes. Annu. Rev. Biochem.
48, 719-754.
Wool, I.G., 1996. Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21,
164-165.
Xiao, X., Mruk, D.D., Lee, W.M., Cheng, C.Y., 2011. c-Yes regulates cell adhesion at the
blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithe-
lium of rat testes. Int. J. Biochem. Cell. Biol. 43, 651-665.
Xu, J., Anuar, F., Ali, S.M., Ng, M.Y., Phua, D.C., Hunziker, W., 2009. Zona occludens-2 is
critical for blood-testis barrier integrity and male fertility. Mol. Biol. Cell. 20, 4268-4277.
Xu, J., Kausalya, P.J., Phua, D.C., Ali, S.M., Hossain, Z., Hunziker, W., 2008. Early embryonic
lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles
for individual zonula occludens proteins in mammalian development. Mol. Biol. Cell.
28, 1669-1678.
Yan, H.H., Cheng, C.Y., 2005. Blood-testis barrier dynamics are regulated by an engage-
ment/disengagement mechanism between tight and adherens junctions via peripheral
adaptors. Proc. Natl. Acad. Sci. U.S.A. 2005, 11722-11727.
Yan, H.H., Cheng, C.Y., 2006. Laminin α3 forms a complex with β3 and γ3 chains that
serves as the ligand for α6β1-integrin at the apical ectoplasmic specialization in adult rat
testes. J. Biol. Chem. 281, 17286-17303.
Yan, H.H., Mruk, D.D., Lee, W.M., Cheng, C.Y., 2007. Ectoplasmic specialization: a friend or
a foe of spermatogenesis? Bioessays 29, 36-48.
Yan, H.H., Wong, E.W.P., Lee, W.M., Cheng, C.Y., 2008a. An autocrine axis in the testis that
coordinates spermiation and blood-testis barrier restructuring during spermatogenesis.
Proc. Natl. Acad. Sci. U.S.A. 105, 8950-8955.
Yan, H.H.N., Mruk, D.D., Cheng, C.Y., 2008b. Junction restructuring and spermatogenesis:
the biology, regulation, and implication in male contraceptive development. Curr. Top.
Dev. Biol. 80, 57-92.
Yan, H.H.N., Mruk, D.D., Lee, W.M., Cheng, C.Y., 2008c. Blood-testis barrier dynamics are
regulated by testosterone and cytokines via their differential effects on the kinetics of
protein endocytosis and recycling in Sertoli cells. FASEB J. 22, 1945-1959.
Yang, Q., Ionki, K., Ikenoue, T., Guan, K.L., 2006. Identification of Sin1 as an essential
TORC2 component required for complex formation and kinase activity. Genes Dev.
20, 2820-2832.
Yao, P.L., Lin, Y.C., Richburg, J.H., 2009. TNFα-mediated disruption of spermatogenesis in
response to Sertoli cell injury in rodents is partially regulated by MMP2. Biol. Reprod.
80, 581-589.
Yao, P.L., Lin,Y.C., Richburg, J.H., 2010. Mono-(2-ethylhexyl) phthalate-induced disruption
of junctional complexes in the seminiferous epithelium of the rodent testis is mediated
by MMP2. Biol. Reprod. 82, 516-527.
Yokoyama, S., Tachibana, K., Nakanish, H., Yamamoto, Y., Irie, K., Mandai, K., Naqafuchi,
A., Monden, M., Takai, Y., 2001. alpha-catenin-independent recruitment of ZO-1 to
nectin-based cell-cell adhesion sites through afadin. Mol. Biol. Cell. 12, 1595-1609.
Yonemura, S., 2011. Cadherin-actin interactions at adherens junctions. Curr. Opin. Cell.
Biol. 23, 515-522.
Zhang, L., Cui, R., Cheng, X., Du, J., 2005. Antiapoptotic effect of serum and glucocor-
ticoid-inducible protein kinase is mediated by novel mechanism activating I{kappa}B
kinase. Cancer Res. 65, 457-464.
Zhou, H., Huang, S., 2010. The complexes of mammalian target of rapamycin. Curr. Protein
Pept. Sci. 11, 409-424.
Zoncu, R., Efeyan, A., Sabatini, D.M., 2011. mTOR: from growth signal integration to can-
cer, diabetes and ageing. Nat. Rev. Mol. Cell. Biol. 12, 21-35.
Search WWH ::




Custom Search