Biology Reference
In-Depth Information
Farinha, P., Masoudi, H., Skinnider, B.F., Shumansky, K., Spinelli, J.J., Gill, K., Klasa, R., Voss,
N., Connors, J.M., Gascoyne, R.D., 2005. Analysis of multiple biomarkers shows that
lymphoma-associated macrophage (LAM) content is an independent predictor of sur-
vival in follicular lymphoma (FL). Blood 106, 2169-2174.
Fischer, C., Jonckx, B., Mazzone, M., Zacchigna, S., Loges, S., Pattarini, L., Chorianopoulos,
E., Liesenborghs, L., Koch, M., De, M.M., Autiero, M., Wyns, S., Plaisance, S., Moons,
L., van, R.N., Giacca, M., Stassen, J.M., Dewerchin, M., Collen, D., Carmeliet, P., 2007.
Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting
healthy vessels. Cell 131, 463-475.
Fischer, C., Mazzone, M., Jonckx, B., Carmeliet, P., 2008. FLT1 and its ligands VEGFB and
PlGF: drug targets for anti-angiogenic therapy? Nat. Rev. Cancer 8, 942-956.
Fokas, E., Im, J.H., Hill, S., Yameen, S., Stratford, M., Beech, J., Hackl, W., Maira, S.M., Ber-
nhard, E.J., McKenna, W.G., Muschel, R.J., 2012. Dual inhibition of the PI3K/mTOR
pathway increases tumor radiosensitivity by normalizing tumor vasculature. Cancer Res.
72, 239-248.
Friggeri, A., Yang, Y., Banerjee, S., Park, Y.J., Liu, G., Abraham, E., 2010. HMGB1 inhibits
macrophage activity in efferocytosis through binding to the alphavbeta3-integrin. Am. J.
Physiol. Cell. Physiol. 299, C1267-C1276.
Fujiwara, T., Fukushi, J., Yamamoto, S., Matsumoto, Y., Setsu, N., Oda, Y., Yamada, H., Okada,
S., Watari, K., Ono, M., Kuwano, M., Kamura, S., Iida, K., Okada,Y., Koga, M., Iwamoto,
Y., 2011. Macrophage infiltration predicts a poor prognosis for human ewing sarcoma.
Am. J. Pathol. 179, 1157-1170.
Funada, Y., Noguchi, T., Kikuchi, R., Takeno, S., Uchida, Y., Gabbert, H.E., 2003. Prognostic
significance of CD8+ T cell and macrophage peritumoral infiltration in colorectal can-
cer. Oncol. Rep. 10, 309-313.
Galli, S.J., Borregaard, N., Wynn, T.A., 2011. Phenotypic and functional plasticity of cells of
innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12, 1035-
1044.
Gil-Bernabe, A.M., Ferjancic, S., Tlalka, M., Zhao, L., Allen, P.D., Im, J.H., Watson, K., Hill,
S.A., Amirkhosravi, A., Francis, J.L., Pollard, J.W., Ruf, W., Muschel, R.J., 2012. Recruit-
ment of monocytes/macrophages by tissue factor-mediated coagulation is essential
for metastatic cell survival and premetastatic niche establishment in mice. Blood 119,
3164-3175.
Giraudo, E., Inoue, M., Hanahan, D., 2004. An amino-bisphosphonate targets MMP-9-ex-
pressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest.
114, 623-633.
Gocheva,V., Wang, H.W., Gadea, B.B., Shree, T., Hunter, K.E., Garfall, A.L., Berman, T., Joyce,
J.A., 2010. IL-4 induces cathepsin protease activity in tumor-associated macrophages to
promote cancer growth and invasion. Genes Dev. 24, 241-255.
Gordon, S., Taylor, P.R., 2005. Monocyte and macrophage heterogeneity. Nat. Rev. Immu-
nol. 5, 953-964.
Grivennikov, S.I., Greten, F.R., Karin, M., 2010. Immunity, inflammation, and cancer. Cell
140, 883-899.
Grunewald, M., Avraham, I., Dor,Y., Bachar-Lustig, E., Itin, A., Jung, S., Chimenti, S., Lands-
man, L., Abramovitch, R., Keshet, E., 2006. VEGF-induced adult neovascularization:
recruitment, retention, and role of accessory cells. Cell 124, 175-189.
Hagemann, T., Lawrence, T., McNeish, I., Charles, K.A., Kulbe, H., Thompson, R.G., Robin-
son, S.C., Balkwill, F.R., 2008. “Re-educating” tumor-associated macrophages by target-
ing NF-kappaB. J. Exp. Med. 205, 1261-1268.
Hamada, I., Kato, M.,Yamasaki, T., Iwabuchi, K., Watanabe, T.,Yamada, T., Itoyama, S., Ito, H.,
Okada, K., 2002. Clinical effects of tumor-associated macrophages and dendritic cells on
renal cell carcinoma. Anticancer Res. 22, 4281-4284.
Search WWH ::




Custom Search