Biomedical Engineering Reference
In-Depth Information
formulations in three-dimensional patterns. Both chemically and physically
crosslinked elastic hydrogels can be rendered biodegradable through the introduc-
tion of hydrolytically sensitive groups into the networks. Due to their biocompat-
ibility, biodegradability, and good mechanical properties, biodegradable elastic
hydrogels are good candidates as biomaterials for use in medical applications,
including tissue engineering. These hydrogels have been used as biodegradable
sutures and scaffold materials to engineer various types of tissues in mechanical
dynamic environments. Elastic hydrogels with described properties are promising
expander candidates which may contribute to more effective harvesting of tissue
for reconstructive interventions. However, the synthesis of biodegradable hydro-
gels with rubberlike elasticity and strength is not easy. Moreover, in vivo tests
should be done to improve the clinical applicability of elastic hydrogels for tissue
expansion as well as other medical applications.
References
1 Hennink , W.E. and Van Nostrum , C.F.
(2002) Novel crosslinking methods to
design hydrogels. Adv. Drug Deliv. Rev. ,
54 , 13 - 36 .
2 Kopecek , J. ( 2007 ) Hydrogel biomaterials:
a smart future. Biomaterials , 28 ,
5185 - 5192 .
3 Yang , Z. , Wang , L. , Wang , J. , Gao , P. ,
and Xu , B. ( 2010 ) Phenyl groups in
supramolecular nanofi bers confer
hydrogels with high elasticity and rapid
recovery . J. Mater. Chem. , 20 , 2128 - 2132 .
4 Lee , S.H. , Kim , B.S. , Kim , S.H. , Choi ,
S.W. , Jeong , S.I. , Kwon , I.K. , Kang , S.W. ,
Nikolovski , J. , Mooney , D.J. , Han , Y.K. ,
and Kim , Y.H. ( 2003 ) Elastic
biodegradable poly(glycolide- co -
caprolactone) scaffold for tissue
engineering . J. Biomed. Mater. Res. A , 66
( 1 ), 29 - 37 .
5 Guan , J. , Fujimoto , K.L. , Sacks , M.S. , and
Wagner , W.R. ( 2005 ) Preparation and
characterization of highly porous,
biodegradable polyurethane scaffolds for
soft tissue applications. Biomaterials , 26 ,
3961 - 3971 .
6 Chaterji , S. , Kwon , I.K. , and Park , K.
(2007) Smart polymeric gels: redefi ning
the limits of biomedical devices. Prog.
Polym. Sci. , 32 , 1083 - 1122 .
7 Kamath , K.R. and Park , K. ( 1993 )
Biodegradable hydrogels in drug delivery.
Adv. Drug Deliv. Rev. , 11 , 59 - 84 .
8 Osada , Y. and Matsuda , A. ( 1995 ) Shape
memory in hydrogels. Nature , 376 , 219 .
9 Matsuda , A. , Sato , J. , Yasunaga , H. , and
Osada , Y. ( 1994 ) Order - disorder
transition of a hydrogel containing an
n - alkyl acrylate . Macromolecules , 27 ,
7695 - 7698 .
10 Lendlein , A. , Schmidt , A.M. , and Langer ,
R. ( 2001 ) AB - polymer networks based on
oligo(
- caprolactone) segments showing
shape - memory properties . Proc. Natl.
Acad. Sci. USA , 98 ( 3 ), 842 - 847 .
11 Lendlein , A. and Langer , R. ( 2002 )
Biodegradable, elastic shape - memory
polymers for potential biomedical
applications . Science , 296 , 1673 - 1676 .
12 Choi , N.Y. , Kelch , S. , and Lendlein , A.
( 2006 ) Synthesis, shape - memory
functionality and hydrolytical degradation
studies on polymer networks from
poly( rac - lactide) - b - poly(propylene
oxide) - b - poly( rac - lactide) dimethacrylate .
Adv. Eng. Mater. , 8 ( 5 ), 439 - 445 .
13 Zheng , X. , Zhou , S. , Li , X. , and Weng , J.
(2006) Shape memory properties of
poly(D , L - lactide)/hydroxyapatite
composite . Biomaterials , 27 , 4288 - 4295 .
14 Omidian , H. , Rocca , J.G. , and Park , K.
( 2006 ) Elastic, superporous hydrogel
hybrids of polyacrylamide and sodium
alginate . Macromol. Biosci. , 6 , 703 - 710 .
15 Qui , Y. and Park , K. ( 2003 ) Superporous
IPN hydrogels having enhanced
ε
Search WWH ::




Custom Search