Biomedical Engineering Reference
In-Depth Information
Qiang, H., and Richmond, A. (1994). Optimizing the population density in Isochrysis galbana
grown outdoors in a glass column photobioreactor. Journal of Applied Phycology ,
6: 391-396.
Richardson, C. (2011). Investigating the Role of Reactor Design to Maximise the Environmental
Benefit of Algal Oil for Biodiesel. Master's thesis. University of Cape Town, South Africa.
Richmond, A. (2000). Microalgal biotechnology at the turn of the millennium: A personal
view. Journal of Applied Phycology , 12: 441-451.
Richmond, A., and Cheng-Wu, Z. (2001). Optimization of a flat plate glass reactor for mass
production of Nannochloropsis sp. outdoors. Journal of Biotechnology , 85: 259-269.
Richmond, A., Boussiba, S., Vonshak, A., and Kopel, R. (1993). A new tubular reactor for
mass production of microalgae outdoors. Journal of Applied Phycology , 5: 327-332.
Richmond, A., Lichtenberg, E., Stahl, B., and Vonshak, A. (1990). Quantitative assessment of
the major limitations on productivity of Spirulina platensis in open raceways. Journal of
Applied Phycology , 2: 195-206.
Robinson, L. (1987). Improvements Relating to Biomass Production. European Patent
EP0239272.
Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., and Tredici, M.R.
(2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass
cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering , 102: 100-112.
Rubio, F., Fernandez, F., Perez, J., Camacho, F., and Grima, E. (1999). Prediction of dissolved
oxygen and carbon dioxide concentration profiles in tubular photobioreactors for
microalgal culture. Biotechnology and Bioengineering , 62: 71-86.
Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., and Smith,
A.G. (2010). Biodiesel from algae: challenges and prospects. Current Opinions in
Biotechnology , 21: 277-286.
Setlik, I., Veladimir, S., and Malek, I. (1970). Dual purpose open circulation units for large
scale culture of algae in temperate zones. I. Basic design considerations and scheme of
a pilot plant. Algologie Studies (Trebon) , 1: 111-164.
Sheehan, J., Dunahay, T., Benemann, J.R., and Roessler, P. (1998). A Look Back at the US
Department of Energy's Aquatic Species Program: Biodiesel from Algae. National
Renewable Energy Laboratory, Golden, CO.
Singh, A., Nigam, P.S., and Murphy, J.D. (2011). Mechanism and challenges in commerciali-
sation of algal biofuels. Bioresource Technology , 102: 26-34.
Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. (2006). Commercial applications
of microalgae. Journal of Bioscience and Bioengineering , 101: 87-96.
Sánchez Mirón, A., Contreras Gómez, A., García Camacho, F., Molina Grima, E., and
Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale
monoculture of microalgae. Journal of Biotechnology , 70: 249-270.
Torzillo, G., Pushparaj, B., Bocci, F., Balloni, W., Materassi, R., and Florenzano, G. (1986).
Production of Spirulina biomass in closed photobioreactors. Biomass , 11: 61-74.
Tredici, M.R., Carlozzi, P., Chini Zittelli, G., and Materassi, R. (1991). A vertical alveolar
panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource
Technology , 38: 153-159.
Trotta, P. (1981). A simple and inexpensive system for continuous monoxenic mass culture of
marine microalgae. Aquaculture , 22: 383-387.
Ugwu, C.U., Aoyagi, H., and Uchiyama, H. (2008). Photobioreactors for mass cultivation of
algae. Bioresource Technology , 99: 4021-4028.
Ugwu, C.U., Ogbonna, J.C., and Tanaka, H. (2002). Improvement of mass transfer
characteristics and productivities of inclined tubular photobioreactors by installation of
internal static mixers. Applied Microbiology and Biotechnology , 58: 600-607.
Vonshak, A. (1997). Spirulina platensis (Arthrospira): Physiology, Cell-Biology and
Biotechnology, London: Taylor & Francis.
Search WWH ::




Custom Search