Biomedical Engineering Reference
In-Depth Information
Feng, Y., Li, C., and Zhang, D. (2011). Lipid production of Chlorella vulgaris cultured in
artificial wastewater medium. Bioresource Technology, 102: 101-105.
Garca, J., Mujeriego, R., and Hernandez-Marine, M. (2000). High rate algal pond operating
strategies for urban wastewater nitrogen removal. Journal of Applied Phycology, 12:
331-339.
García, J., Green, B.F., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., and Oswald, W.J.
(2006). Long term diurnal variations in contaminant removal in high rate ponds treating
urban wastewater. Bioresource Technology, 97: 1709-1715.
Ghasemi, Y., Rasoul-Amini, S., and Fotooh-Abadi, E. (2011) The biotransformation, bio-
diegradation, and bioremediation of organic compounds by microalgae. Journal of
Phycology, 47: 969-980.
Ghosh, D. (1991). Ecosystem approach to low-cost sanitation in India. In Ecological
Engineerin for Wastewater Treatment (Eds. C. Etnier and B. Guterstam). Bokeskogen,
Gothenburg, Sweden, pp. 63-79.
Golueke, C.G., and Oswald, W.J. (1965). Harvesting and processing sewage-grown planktonic
algae. Journal of Water Pollution Control Federation, 37: 471-498.
Gomec, C.Y. (2010). High-rate anaerobic treatment of domestic wastewater at ambient operat-
ing temperatures: A review on benefits and drawbacks. Journal of Environmental Science
and Health, Part A, Toxic/Hazardous Substances and Environmental Engineering, 45:
1169-1184.
Gomez Villa, H., Voltolina, D., Nieves, M., and Pina, P. (2005). Biomass production and nutri-
ent budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae) in artificial
wastewater, under the winter and summer conditions of Mazatlan, Sinaloa, Mexico.
Vie et Milieu, 55: 121-126.
Green, F.B., Lundquist, T.J., and Oswald, W.J. (1995). Energetics of advanced integrated
wastewater pond systems. Water Science and Technology, 31: 9-20.
Hanumantha Rao, P., Ranjith Kumar, R., Raghavan, B.G., Subramanian, V.V., and
Sivasubramanian, V. (2011). Application of phycoremediation technology in the treat-
ment of wastewater from a leather-processing chemical manufacturing facility. Water
South Africa , 37: 7-14.
Harun, R., Singh, M., Forde, G.M., and Danquah, M.K. (2010). Bioprocess engineering of
microalgae to produce a variety of consumer products. Renewable and Sustainable
Energy Reviews, 14: 1037-1047.
Hirata, S., Hayashitani, M., Taya, M., and Tone, S. (1996). Carbon dioxide fixation in batch
culture of Chlorella sp. using a photobioreactor with a sunlight-collection device.
Journal of Fermentation Bioengineering, 81: 470-472.
Hoffmann, J. (1998). Wastewater treatment with suspended and nonsuspended algae Journal
of Phycology, 34: 757-763.
John, J. (2000). A self-sustainable remediation system for acidic mine voids. In 4th
International Conference of Diffuse Pollution, p. 506-511.
Kong, Q.X., Li, L., Martinez, B., Chen, P., and Ruan, R. (2010). Culture of microalgae
Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Applied
Biochemistry and Biotechnology, 160: 9-18.
Korner, S., and Vermaat, J.E. (1998). The relative importance of Lemna gibba L., bacteria and
algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewa-
ter. Water Research, 32: 3651-3661.
Kumar, R.R., Rao, P.H., Subramanian, V.V., and Sivasubramanian, V. (2011). Enzymatic
and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent
of a confectionery industry. Journal of Food Science and Technology, doi 10.1007/
s13197-011-0501-2.
Laliberté, G., Proulx, G., Pauw, N., and De la Noüe, J. (1994). Algal technology in wastewater
treatment. Ergebnisse der Limnologie, 42: 283-302.
Search WWH ::




Custom Search