Biomedical Engineering Reference
In-Depth Information
(a)
(b)
2
1
3
4
2
1
Off
Off
Aqueous
inlet 4
Aqueous
inlet 1
3
Off
On
Aqu. 4
Aqu. 1
Aqueous
inlet 3
Aqueous
inlet 2
Oil
inlet
400 µm
Aqu. 3
Aqu. 2
FIGURE 3.31 Microvalve-actuated.control.of.individual.droplets..(From.Shaojiang.Zeng,.Bowei.Li,.
Xiao'ou. Su,. Jianhua. Qin,. and. Bingcheng. Lin,. “Microvalve-actuated. precise. control. of. individual.
droplets.in.microluidic.devices,”. Lab Chip .9,.1340,.2009..Reproduced.with.permission.from.The.
Royal.Society.of.Chemistry.)
on demand at rates up to 10,000 droplets/s using a pulse laser-induced cavitation; the system is
capable of delivering droplet volumes between 1 and 150 pL with less than 1% volume variation.
3.7.3 “Air Carrier” Microluidic Platform
he third platform, shown in Figure 3.32 , was recently invented by Hiroaki Suzuki and
coworkers at the University of Tsukuba, Japan. It essentially replaces the oil of the oil carrier
Silicon tube
(to a pump)
a
Handling flow channel
Silicon tube
(inlet/outlet)
Main flow channel
Silicon tube
(to a pump)
Liquid plug
Air
b
d
c
e
5 mm
FIGURE 3.32 Microdroplets.separated.by.an.air.carrier..(From.Fumihiro.Sassa,.Junji.Fukuda,.and.
Hiraoki. Suzuki,. “Microprocessing. of. liquid. plugs. for. bio/chemical. analyses,”. Anal. Chem. . 80,.
6206-6213,.2008..Reprinted.with.permission.of.the.American.Chemical.Society..Figure.contrib-
uted.by.Hiroaki.Suzuki.)
Search WWH ::




Custom Search