Biology Reference
In-Depth Information
human cell fractions, and recombinant human enzymes, essential information will, in
the future, be derived to a greater extent directly from human studies. At the same
time, studies utilizing surrogate animals will also be revolutionized by such new tech-
niques of molecular biology as the use of knockout and transgenic, including “human-
ized”, mice (e.g., Gonzalez, 2003 ), and the knowledge of the genomes of many species.
These same techniques through the study of genetic polymorphisms will enable us
to identify human populations at increased risk and enable comparative studies to be
carried out at the level of specific isoforms of the XMEs involved. Thus the study of
pesticide metabolism continues to evolve into a new, more molecular, era that will be
fascinating as well as useful.
REFERENCES
Abass, K., Reponen, P., Turpeinen, M., Jalonen, J., & Pelkonen, O. (2007a). Characterization of diuron
N-demethylation by mammalian hepatic microsomes and cDNA-expressed human cytochrome P450
enzymes. Drug Metab. Dispos. , 35 , 1634-1641.
Abass, K., Reponen, P., Jalonen, J., & Pelkonen, O. (2007b). In vitro metabolism and interaction of profe-
nofos by human, mouse and rat liver preparations. Pestic. Biochem. Physiol. , 87 , 238-247.
Abass, K., Reponen, P., Jalonen, J., & Pelkonen, O. (2007c). In vitro metabolism and interactions of the
fungicide metalaxyl in human liver preparations. Environ. Toxicol. Pharmacol. , 23 , 39-47.
Abass, K., Reponen, P., Mattila, S., & Pelkonen, O. (2009). Metabolism of carbosulfan. I. Species differences
in the in vitro biotransformation by mammalian hepatic microsomes, including human. Chem. Biol.
Interact. , 181 , 210-219.
Abass, K., Reponen, P., Mattila, S., & Pelkonen, O. (2010). Metabolism of carbosulfan. II. Human interin-
dividual variability in its in vitro hepatic biotransformation and the identification of the cytochrome
P450 isoforms involved. Chem. Biol. Interact. , 185 , 163-173.
Abel, E. L., Opp, S. M., Verlinde, C. L., Bammler, T. K., & Eaton, DL. (2004a). Characterization of atrazine
biotransformation by human and murine glutathione S-transferases. Toxicol. Sci. , 80 , 230-238.
Abel, E. L., Bammler, T. K., & Eaton, D. L. (2004b). Biotransformation of methyl parathion by glutathione
S-transferases. Toxicol. Sci. , 79 , 224-232.
Adams, N. H., Levi, P. E., & Hodgson, E. (1990). In vitro studies of the metabolism of atrazine, simazine
and terbutryn in several mammalian species. J. Agric. Food Chem. , 38 , 1411-1417.
Ahmed, M. K., Casida, J. E., & Nichols, R. E. (1958). Bovine metabolism of organophosphorus insecticides:
Significance of rumen fluid with particular reference to parathion. J. Agric. Food Chem. , 6 , 740-746.
Aitio, A. (1978). A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal. Biochem. , 85 , 488-491.
Akhtar, M. H. (1984). Metabolism of deltamethrin by cow and chicken liver enzyme preparation. J. Agric.
Food Chem. , 32 , 258-262.
Alvares, A. P., Kappas, A., Levin, W., & Conney, A. H. (1973). Inducibility of benzo[ a ]pyrene hydroxylase in
human skin by polycyclic hydrocarbons. Clin. Pharmacol. Ther. , 14 , 30-40.
Anand, S. S., Bruckner, J. V., Haines, W. T., Muralidhara, S., Fisher, J. W., & Padilla, S. (2006).
Characterization of deltamethrin metabolism by rat plasma and liver microsomes. Toxicol. Appl.
Pharmacol. , 212 , 156-166.
Anand, S. S., Kim, K. B., Padilla, S., Muralidhara, S., Kim, H. J., Fisher, J. W., et al. (2006). Ontogeny of
hepatic and plasma metabolism of deltamethrin in age-dependent neurotoxicity. Drug Metab. Dispos. ,
34 , 389-397.
Anders, M. W., Dekant, W., & Vamvakas, S. (1992). Glutathione-dependent toxicity. Xenobiotica , 22 ,
1135-1145.
Atta-Asafo-Adjei, E., Lawton, M. P., & Philpot, R. M. (1993). Cloning, sequencing, distribution, and
expression of a mammalian flavin-containing monooxygenase from a third gene subfamily. J. Biol.
Chem. , 268 , 9681-9689.
Search WWH ::




Custom Search