Civil Engineering Reference
In-Depth Information
8.4.2.1.3 Axial Compression and Bending from End Moments
M A + M B
L
z .
M p (z) = M MA + M MB = M A
(8.55)
Substitution of Equation 8.55 into Equation 8.33 yields
M A +
z .
d 2 y
d z 2 +
M A
EI +
M B
EIL
k 2 y
=−
(8.56)
The general solution to Equation 8.56 is
M A +
M B
EILk 2
M A
EIk 2
y
=
A sin kz
+
B cos kz
+
z
(8.57)
Considering boundary conditions of y( 0 ) = y(L) = 0
(M A cos kL
M B )
EIk 2 sin kL
+
M A
EIk 2 cos kz
M A +
M B
EILk 2
M A
EIk 2 .
y
=−
sin kz
+
+
z
(8.58)
Differentiation of Equation 8.58 yields
d y
d z =−
(M A cos kL + M B )
EIk sin kL
M A
EIk sin kz +
M A + M B
EILk 2
cos kz
,
(8.59)
d 2 y
d z 2
(M A cos kL + M B )
EI sin kL
M A
EI cos kz ,
=
sin kz
(8.60)
d 3 y
d z 3
k(M A cos kL
+
M B )
kM A
EI
=
cos kz
+
sin kz .
(8.61)
EI sin kL
The bending moment and shear forces are
EI d 2 y
d z 2
(M A cos kL
+
M B )
M Z =−
=−
sin kz
+
M A cos kz ,
(8.62)
sin kL
EI d 3 y
d z 3
k(M A cos kL
+
M B )
V z =−
=−
cos kz
kM A sin kz .
(8.63)
sin kL
The maximum moment occurs where the shear force is zero. If Equation 8.63 is
equated to zero, we obtain
M A cos kL
M B
M A sin kL
+
tan kz M =−
,
(8.64)
where z M is the location of the maximum moment along the z axis. Expressions
for sin( kz M ) and cos( kz M ) may be obtained from Equation 8.64 for substitution into
Equation 8.62 to obtain the maximum bending moment, M max ,as
(M A /M B ) 2
2 (M A /M B ) cos kL
+
1
.
M max =−
M B
(8.65)
sin 2 kL
 
Search WWH ::




Custom Search