Civil Engineering Reference
In-Depth Information
The moment, M z ,at z is then
M Z =
M p (z)
+
Py .
(8.32)
EI d 2 y/ d z 2 into Equation 8.32 yields
Substitution of M Z =−
d 2 y
d z 2 + k 2 y =−
M p (z)
EI
,
(8.33)
where k 2
P
EI .
Differentiating twice yields
=
d 2 M p (z)
d z 2
.
d 4 y
d z 4 +
k 2 d 2 y
d z 2
1
EI
=−
(8.34)
Equation 8.34 is the differential equation for axial compression and bending.
8.4.2.1.1 Axial Compression and Bending from a Uniformly Distributed
Transverse Load
wz(L
z)
=
M w(z) =
M p (z)
,
(8.35)
2
d 2 M p (z)
d z 2
=−
w ,
(8.36)
and the differential equation for axial compression and flexure (Equation 8.34) is
d 4 y
d z 4 +
k 2 d 2 y
d z 2
w
EI .
=
(8.37)
The solution of Equation 8.37 is (Chen and Lui, 1987)
tan kL
1
w
EIk 4
w
2 EIk 2 z(L
y(z)
=
2 sin kz
+
cos kz
z) ,
(8.38)
tan kL
1 ,
d 2 y(z)
d z 2
w
EIk 2
=−
2 sin kz +
cos kz
(8.39)
tan kL
1 .
EI d 2 y
d z 2
w
EIk 2
M Z =−
=
2 sin kz
+
cos kz
(8.40)
The maximum moment at the center span is
sec kL
1
8 ( sec (kL/ 2 )
,
wL 2
8
w
k 2
1 )
M z = L / 2 =
2
=
(8.41)
k 2 L 2
 
 
Search WWH ::




Custom Search