Biomedical Engineering Reference
In-Depth Information
[92] Sun, J., X. Chen, T. Lu, S. Liu, H. Tian, Z. Guo, and X. Jing. “Formation of reversible shell
cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(L-
cysteine)- block -poly(L-lactide),” Langmuir , Vol. 24, 2008, pp. 10099-10106.
[93] Arimura, H., Y. Ohya, and T. Ouchi, “Formation of core-shell type biodegradable
polymeric micelles from amphiphilic poly (aspartic acid)- block -polylactide diblock
copolymer,” Biomacromolecules, Vol. 6, 2005, pp. 720-725.
[94] Lecommandoux, S., H.-A. Klok, and H. Schlaad, “Self assembly of linear polypeptide-
based diblock copolymers,” In Block Copolymers in Nanoscience. Lazzari, M., Liu G,
Lecommandoux S. (eds.) Wiley-VCH Verlag; 2006:4.
[95] Lübbert, A., V. Castelletto, I. W. Hamley, H. Nuhn, M. Scholl, L. Bourdillon, C. Wandrey,
and H.-A. Klok, “Nonspherical assemblies generated from polystyrene- b -poly(L-lysine)
polyelectrolyte block copolymers,” Langmuir , Vol. 21, 2005, pp. 6582-6589.
[96] Gil, G.O., M. Łosik, H. Schlaad, M. Drechsler, and T. Hellweg, “Properties of pH-
responsive mixed aggregates of polystyrene- block -poly(L-lysine) and nonionic surfactant in
solution and adsorbed at a solid surface,” Langmuir , Vol. 24, 2008, pp. 12823-12828.
[97] Gebhardt, K.E., S. Ahn, G. Venkatachalam, and D. A. Savin, “Rod-sphere transition in
polybutadiene−poly(L-lysine) block copolymer assemblies,” Langmuir , Vol.23, 2007, pp.
2851-2856.
[98] Tian, Z., M. Wang, A. Zhang, and Z. Feng, “Preparation and evaluation of novel
amphiphilic glycopeptide block copolymers as carriers for controlled drug release,”
Polymer, Vol. 49, 2008, pp. 446-454.
[99] Sun, J., C. Deng, X. Chen, H. Yu, H. Tian, J. Sun, and X. Jing, “Self-assembly of
polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH
dependence,” Biomacromolecules , Vol. 8, 2007, pp. 1013-1017.
[100] ten Cate, M.G.J., and H. G. Börner, “Synthesis of ABC-triblock peptide-Polymer
Conjugates for the Positioning of Peptide Segments within Block Copolymer Aggregates,”
Macromolecular Chemistry Physics , Vol. 208, 2007, pp. 1437-1446.
[101] Lin, J., J. Zhu, T. Chen, S. Lin, C. Cai, L. Zhang, Y. Zhuang, and X.-S. Wang, “Drug
releasing behavior of hybrid micelles containing polypeptide triblock copolymer,”
Biomaterials , Vol. 30, 2009, pp. 108-117.
[102] Agut, W., A. Brûlet, D. Taton, and S. Lecommandoux, “Thermoresponsive micelles from
Jeffamine- b -poly(L-glutamic acid) double hydrophilic block copolymers,” Langmuir , Vol.
23, 2007, pp. 11526-11533.
[103] Rao, J., Z. Luo, Z. Ge, H. Liu, and S. Liu, “'Schizophrenic' micellization associated with
coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock
copolymer,” Biomacromolecules , Vol. 8, 2007, pp. 3871-3878.
[104] Deng, L., K. Shi, Y. Zhang, H. Wang, J. Zeng, X. Guo, Z. Du, and B. Zhang, “Synthesis of
well-defined poly(N-isopropylacrylamide)- b -poly(L-glutamic acid) by a versatile approach
and micellization,” Journal of Colloid and Interface Science , Vol. 323, 2008, pp. 169-175.
[105] Kukula, H., H. Schlaad, M. Antonietti, and S. Förster, “The formation of polymer vesicles
or 'peptosomes' by polybutadiene- block -poly(L-glutamate) s in dilute aqueous solution,”
Journal of American Chemical Society, Vol. 124, 2002, pp. 1658-1663.
[106] Chécot, F., S. Lecommandoux, Y. Gnanou, and H.-A. Klok, “Water-soluble stimuli-
responsive vesicles from peptide-based diblock copolymers,” Angewandte Chemie
International Edition English , Vol. 41, 2002, pp. 1340-1343.
Search WWH ::




Custom Search