Biomedical Engineering Reference
In-Depth Information
142. Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful
for tissue resurfacing. J Biomed Mater Res 1998;39:266-76.
143. Kantlehner M, Schaffner P, Finsinger D, et al. Surface Coating with Cyclic RGD Peptides
Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation. ChemBioChem
2000;1:107-14.
144. Jeschke B, Meyer J, Jonczyk A, et al. RGD-peptides for tissue engineering of articular
cartilage. Biomaterials 2002;23:3455-63.
145. Danilov YN, Juliano RL. (Arg-Gly-Asp)n-Albumin conjugates as a model substratum for
integrin-mediated cell adhesion. Exp Cell Res 1989;182:186-96.
146. Drumheller PD, Hubbell JA. Polymer Networks with Grafted Cell Adhesion Peptides for
Highly Biospecific Cell Adhesive Substrates. Anal Biochem 1994;222:380-8.
147. Drumheller PD, Elbert DL, Hubbell JA. Multifunctional poly(ethylene glycol) semi-
interpenetrating polymer networks as highly selective adhesive substrates for bioadhesive
peptide grafting. Biotechnol Bioeng 1994;43:772-80.
148. Neff JA, Tresco PA, Caldwell KD. Surface modification for controlled studies of cell-ligand
interactions. Biomaterials 1999;20:2377-93.
149. Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation,
migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J
Biomed Mater Res 2002;60:86-93.
150. Palecek SP, Loftus JC, Ginsberg MH, Luffenburger DA, Horwitz AF. Integrin-ligand binding
properties govern cell migration speed through cell-substratrum adhesiveness. Nature
1997;385:537-40.
151. Irvine DJ, Hue K, Mayes AM, Griffith LG. Simulations of Cell-Surface Integrin Binding to
Nanoscale-Clustered Adhesion Ligands. Biophys J 2002;82:120-32.
152. Maheshwari G, Brown G, Lauffenburger D, Wells A, Griffith L. Cell adhesion and motility
depend on nanoscale RGD clustering. J Cell Sci 2000;113:1677-86.
153. Craig WS, Cheng S, Mullen DG, Blevitt J, Pierschbacher MD. Concept and progress in the
development of RGD-containing peptide pharmaceuticals. Biopolymers 1995;37:157-75.
154. Beer J, Springer K, Coller B. Immobilized Arg-Gly-Asp (RGD) peptides of varying lengths
as structural probes of the platelet glycoprotein IIb/IIIa receptor. Blood 1992;79:117-28.
155. Loebsack A, Greene K, Wyatt S, et al. In vivo characterization of a porous hydrogel material
for use as a tissue bulking agent. J Biomed Mater Res 2001;57:575-81.
156. Sakiyama-Elbert SE, Panitch A, Hubbell JA. Development of growth factor fusion proteins
for cell-triggered drug delivery. FASEB J 2001;.
157. Elbert DL, Hubbell JA. Conjugate addition reactions combined with free-radical cross-linking
for the design of materials for tissue engineering. Biomacromolecules 200;2:430-1.
158. Pelham RJ,Jr, Wang YL. Cell Locomotion and Focal Adhesions Are Regulated by the
Mechanical Properties of the Substrate. Biol Bull 1998;194:348-50.
159. Mammen M, Choi S, Whitesides GM. Polyvalent Interactions in Biological Systems:
Implications for Design and Use of Multivalent Ligands and Inhibitors. Angewandte Chemie
International Edition 1998;37:2754-94.
160. Wong JY, Kuhl TL, Israelachvili JN, Mullah N, Zalipsky S. Direct Measurement of a
Tethered Ligand-Receptor Interaction Potential. Science 1997;275:820-2.
161. Lo C, Wang H, Dembo M, Wang Y. Cell Movement Is Guided by the Rigidity of the
Substrate. Biophys J 2000;79:144-52.
162. Ruoslahti E. The RGD story: a personal account. Matrix Biology 2003;22:459-65.
163. Hirano Y, Okuno M, Hayashi T, Goto K, Nakajima A. Cell-attachment activities of surface
immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines. J
Biomater Sci Polym Ed 1993;4:235-43.
Search WWH ::




Custom Search