Biomedical Engineering Reference
In-Depth Information
88. Divya RVV, Manzoor K, Menon D, Selvamurugan N, Nair SV. The design of novel
nanostructures on titanium by solution chemistry for an improved osteoblast response.
Nanotechnology 2009;20:195101.
89. Cai K, Bossert J, Jandt KD. Does the nanometre scale topography of titanium influence
protein
adsorption
and
cell
proliferation?
Colloids
and
Surfaces
B:
Biointerfaces
2006;49:136-44.
90. Keselowsky BG, Collard DM, García AJ. Surface chemistry modulates fibronectin
conformation and directs integrin binding and specificity to control cell adhesion. Journal of
Biomedical Materials Research Part A 2003;66A:247-59.
91. Keselowsky BG, Collard DM, García AJAJ. Surface chemistry modulates focal adhesion
composition and signaling through changes in integrin binding. Biomaterials 2004;25:5947-
54.
92. Keselowsky BG, Collard DM, García AJ. Integrin binding specificity regulates biomaterial
surface chemistry effects on cell differentiation. Proceedings of the National Academy of
Sciences of the United States of America 2005;102:5953-7.
93. Trzaskowski B, Leonarski F, Le Ļ A, Adamowicz L. Altering the Orientation of Proteins on
Self-Assembled Monolayers: A Computational Study. Biomacromolecules 2008;9:3239-
3245.
94. de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organic-Inorganic Surface
Modifications for Titanium Implant Surfaces. Pharm Res 2008;25:2357-2369.
95. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell
adhesion and beyond. Biomaterials 2003;24:4385-415.
96. Ranieri JP, Bellamkonda R, Bekos EJ, Vargo TG, Gardella JA, Aebischer P. Neuronal cell
attachment to fluorinated ethylene propylene films with covalently immobilized laminin
oligopeptides YIGSR and IKVAV. II. J Biomed Mater Res 1995;29:779-85.
97. Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for
tissue engineering in the vascular graft via a new receptor. Biotechnology (N Y) 1991;9:568-
72.
98. Shin H, Jo S, Mikos AG. Modulation of marrow stromal osteoblast adhesion on biomimetic
oligo(poly(ethylene glycol) fumarate) hydrogels modified with Arg-Gly-Asp peptides and a
poly(ethylene glycol) spacer. J Biomed Mater Res 2002;61:169-79.
99. Massia S, Hubbell J. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-
mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell
Biol 1991;114:1089-100.
100. Dee KC, Andersen TT, Bizios R. Design and function of novel osteoblast-adhesive peptides
for chemical modification of biomaterials. J Biomed Mater Res 1998;40:371-7.
101. Kam L, Shain W, Turner JN, Bizios R. Selective adhesion of astrocytes to surfaces modified
with immobilized peptides. Biomaterials 2002;23:511-5.
102. Yamada KM, Kennedy DW. Amino acid sequence specificities of an adhesive recognition
signal. J Cell Biochem 1985;28:99-104.
103. Massia S, Hubbell J. Immobilized amines and basic amino acids as mimetic heparin-binding
domains for cell surface proteoglycan-mediated adhesion. J Biol Chem 1992;267:10133-41.
104. Rezania A, Healy KE. Biomimetic Peptide Surfaces That Regulate Adhesion, Spreading,
Cytoskeletal Organization, and Mineralization of the Matrix Deposited by Osteoblast-like
Cells. Biotechnol Prog 1999;15:19-32.
105. Lee K, Yoon KR, Woo SI, Choi IS. Surface modification of poly(glycolic acid) (PGA) for
biomedical applications. J Pharm Sci 2003;92:933-7.
Search WWH ::




Custom Search