Biomedical Engineering Reference
In-Depth Information
[40] Park, J. S., et al., “ N -Acetyl Histidine-Conjugated Glycol Chitosan Self-assembled
Nanoparticles for Intracytoplasmic Delivery of Drugs: Endocytosis, Exocytosis and Drug
Release”, J. Control. Rel. , Vol. 115, 2006, pp. 37-45.
[41] Park, T. G., Jeong, J. H., and Kim, S. W., “Current Status of Polymeric Gene Delivery
Systems”, Adv. Drug Deliv. Rev. , Vol. 58, 2006, pp. 467-486.
[42] Yang, Y., et al., “Poly(imidazole/DMAEA)phosphazene/DNA self-assembled nanoparticles
for gene delivery: Synthesis and in vitro transfection”, J. Control. Rel. , Vol. 127, 2008, pp.
273-279.
[43] Putnam, et al., “Polyhistidine-PEG:DNA nanocomposites for gene delivery”, Biomaterials ,
Vol. 24, 2003, pp. 4425-4433.
[44] Ihm, J. E., et al., “High Transfection Efficiency of Poly(4-vinylimidazole) as A New Gene
Carrier” , Bioconjug. Chem. , Vol. 14, 2003, pp. 707-708.
[45] Midoux, P., et al., “Membrane Permeabilization and Efficient Gene Transfer by A Peptide
Containing Several Histidines”, Bioconjugate Chem. , Vol. 9, 1998, pp. 260-267.
[46] Zhang, M., et al., “Polyaspartamide-Based Oligo-ethylenimine Brushes with High Buffer
Capacity and Low Cytotoxicity for Highly Efficient Gene Delivery”, Bioconjug. Chem. , Vol.
20, No. 3, 2009, pp. 440-446.
[47] Cavallaro, G., et al., “Polyhydroxyethylaspartamide-spermine Copolymers: Efficient Vectors
for Gene Delivery”, J. Control. Rel. , Vol. 131, 2008, pp. 54-63.
[48] Naira, L. S. and Laurencin, C. T., “Biodegradable Polymers as Biomaterials”, Prog. Polym.
Sci. , Vol. 32, 2007, pp. 762-798.
Search WWH ::




Custom Search