Biomedical Engineering Reference
In-Depth Information
References
[1] Drummond, D. C., Zignani, M., and Leroux, J. C., “Current Status of pH-Sensitive Liposome
in Drug Delivery”, Progress in Lipid Research , Vol. 39, 2000, pp. 409-460.
[2] Panyam, J. and Labhasetwar, V., “Biodegradable Nanoparticles for Drug and Gene Delivery
to Cells and Tissue”, Adv. Drug Deliv. Rev. , Vol. 55, 2003, pp. 329-347.
[3] Zuber, G., et al., “Towards Synthetic Viruses”, Adv. Drug Deliv. Rev. , Vol. 52, 2001, pp. 245-
253.
[4] Nishiyama, N. and Kataoka, Kazunori, “Current State, Achievements, and Future Prospects
of Polymeric Micelles as Nanocarriers for Drug and Gene Delivery”, Pharmacol. Ther. , Vol.
112, 2006, pp. 630-648.
[5] Sheff, D., “Endosomes as a Route for Drug Delivery in the Real World”, Adv. Drug Deliv.
Rev. , Vol. 56, 2004, pp. 927-930.
[6] Watson, P., Jones, A. T., and Stephens, D. J., “Intracellular Trafficking Pathways and Drug
Delivery: Fluorescence Imaging of Iiving and Fixed cells”, Adv. Drug Deliv. Rev. , Vol. 57,
2001, pp. 43-61.
[7] Lechardeur, D., Verkman, A. S., and Lukacs, G. L., “Intracellular Routing of Plasmid DNA
During Non-viral Gene Transfer”, Adv. Drug Deliv. Rev. , Vol. 57, 2005, pp. 755-767.
[8] Godbey, W. T., Wu, K. K., and Mikos, A. G., “Poly(ethylenimine) and Its Role in Gene
Delivery”, J. Control. Rel. , Vol. 60, 1999, pp. 149-160.
[9] Pichon, C., Goncalves, C., and Midoux, P., “Histidine-rich Peptides and Polymers for Nucleic
Acids Delivery”, Adv. Drug Deliv. Rev. , Vol. 53, 2001, 75-94.
[10] Ferruti, P., et al., “Amphoteric Linear Poly(amido-amine)s as Endosomolytic Polymers:
Correlation Between Physicochemical and Biological Properties”, Macromolecules , Vol. 33,
2000, pp. 7793-7800.
[11] Ferruti,
P.,
Marchisio,
M.
A.,
and
Duncan,
R.,
“Poly(anido-amine)s:
Biomedical
Applications”, Macrol. Rapid Commun. , Vol. 23, 2003, pp. 332-355.
[12] Zuidam, N. J., et al., “Effects of Physicochemical Characteristics of Poly [2-
(dimethylamino)ethyl
methacrylate]-based
Polyplexes
on
Cellular
Association
and
Internalization”, J. Drug. Target. , Vol. 8, 2000, pp. 51-66.
[13] Murthy, N., et al., “The Design and Synthesis of Polymers for Eukaryotic Membrane
Disruption”, J. Control. Rel. , Vol. 61, 1999, pp. 137-143.
[14] Bulmus, V., et al., “A New pH-responsive and Glutathione-reactive, Endosomal Membrane-
disruptive Polymeric Carrier for Intracellular Delivery of Biomolecular Drugs”, J. Control.
Rel. , Vol. 93, 2003, pp. 105-120.
[15] Tomida, M. and Nakato, T., “Convenient Synthesis of High Molecular Weight
Poly(succinimide) by Acid-catalysed Polycondensation of L-Aspartic Acid”, Polymer , Vol.
38, 1997, pp. 4733-4736.
[16] Cha, J .N., et al., “Biomimetic Synthesis of Ordered of Silica Structures Mediated by Block
Copolypeptides”, Nature , Vol. 403, 2000, pp. 289-292.
[17] Poland, D. and Scheraga, H.A., Theory of Noncovalent Structure in Polyamino acids, in:
Poly- ŋ -amino acids , Marcel Dekker, NY, 1967, pp. 391-398.
[18] Neri, P., et al., “Synthesis of ŋ , Ȳ -Poly( N -2-hydroxyethyl)-D, L-aspartamides, A New Plasma
Expander”, J. Med. Chem. , Vol. 16, 1973, pp. 893-897.
[19] Mendichi, R., et al., “Molecular Characterization of ŋ , Ȳ -Poly( N -2-hydroxyethyl)-D, L-
aspartamide Derivatives as Potential Self-assembling Copolymers Forming Polymeric
Micelles”, Polymer , Vol. 44, 2003, pp. 4871-4879.
Search WWH ::




Custom Search