Biomedical Engineering Reference
In-Depth Information
[100] S. Kidambi, L. F. Sheng, M. L. Yarmush, M. Toner, I. Lee, and C. Chan, "Patterned co-
culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates,"
Macromolecular Bioscience , vol. 7, pp. 344-353, 2007.
[101] A. Khademhosseini, L. Ferreira, J. Blumling, J. Yeh, J. M. Karp, J. Fukuda, and R. Langer,
"Co-culture of human embryonic stem cells with murine embryonic fibroblasts on
microwell-patterned substrates," Biomaterials , vol. 27, pp. 5968-5977, 2006.
[102] C. G. Galbraith and M. P. Sheetz, "Forces on adhesive contacts affect cell function," Current
Opinion in Cell Biology , vol. 10, pp. 566-571, 1998.
[103] B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, "Transmembrane extracellular
matrix-cytoskeleton crosstalk," Nature Reviews Molecular Cell Biology , vol. 2, pp. 793-805,
2001.
[104] C. Oneill, P. Jordan, P. Riddle, and G. Ireland, "Narrow Linear Strips of Adhesive
Substratum Are Powerful Inducers of Both Growth and Total Focal Contact Area," Journal
of Cell Science , vol. 95, pp. 577-586, 1990.
[105] D. A. Stenger, J. H. Georger, C. S. Dulcey, J. J. Hickman, A. S. Rudolph, T. B. Nielsen, S.
M. Mccort, and J. M. Calvert, "Coplanar Molecular Assemblies of Aminoalkylsilane and
Perfluorinated Alkylsilane - Characterization and Geometric Definition of Mammalian-Cell
Adhesion and Growth," Journal of the American Chemical Society , vol. 114, pp. 8435-8442,
1992.
[106] B. M. Gumbiner, "Cell adhesion: The molecular basis of tissue architecture and
morphogenesis," Cell , vol. 84, pp. 345-357, 1996.
[107] W. Tan, R. Krishnaraj, and T. A. Desai, "Evaluation of nanostructured composite collagen-
chitosan matrices for tissue engineering," Tissue Engineering , vol. 7, pp. 203-210, 2001.
[108] E. Engel, A. Michiardi, M. Navarro, D. Lacroix, and J. A. Planell, "Nanotechnology in
regenerative medicine: the materials side," Trends in Biotechnology , vol. 26, pp. 39-47,
2008.
[109] V. M. Weaver, O. W. Petersen, F. Wang, C. A. Larabell, P. Briand, C. Damsky, and M. J.
Bissell, "Reversion of the malignant phenotype of human breast cells in three-dimensional
culture and in vivo by integrin blocking antibodies," Journal of Cell Biology , vol. 137, pp.
231-245, 1997.
[110] C. E. Semino, J. R. Merok, G. G. Crane, G. Panagiotakos, and S. G. Zhang, "Functional
differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in
three-dimensional peptide scaffolds," Differentiation , vol. 71, pp. 262-270, 2003.
[111] T. C. Holmes, S. de Lacalle, X. Su, G. S. Liu, A. Rich, and S. G. Zhang, "Extensive neurite
outgrowth and active synapse formation on self-assembling peptide scaffolds," Proceedings
of the National Academy of Sciences of the United States of America , vol. 97, pp. 6728-
6733, 2000.
[112] L. G. Cima, D. E. Ingber, J. P. Vacanti, and R. Langer, "Hepatocyte Culture on
Biodegradable Polymeric Substrates," Biotechnology and Bioengineering , vol. 38, pp. 145-
158, 1991.
[113] D. J. Mooney, K. Sano, P. M. Kaufmann, K. Majahod, B. Schloo, J. P. Vacanti, and R.
Langer, "Long-term engraftment of hepatocytes transplanted on biodegradable polymer
sponges," Journal of Biomedical Materials Research , vol. 37, pp. 413-420, 1997.
[114] S. S. Kim, H. Utsunomiya, J. A. Koski, B. M. Wu, M. J. Cima, J. Sohn, K. Mukai, L. G.
Griffith, and J. P. Vacanti, "Survival and function of hepatocytes on a novel three-
dimensional synthetic biodegradable polymer scaffold with an intrinsic network of
channels," Annals of Surgery , vol. 228, pp. 8-13, 1998.
Search WWH ::




Custom Search