Agriculture Reference
In-Depth Information
plant under stress. New insight is coming from transcriptomic studies. Responses of plants,
and in particular of cereals, to abiotic stress are subtly controlled by stress-related regulatory
genes and their associated signalling networks (Gao et al. 2008; Landjeva et al. 2008;
Rabbani et al. 2003; Walia et al. 2006; Zhou et al. 2007; Zhu 2002).
The whole of abiotic stresses are believed to cut the world-wide yield of major crops by
more than 50 % (Alcázar et al. 2006). The present world food crisis should give motivation
enough to stabilize the productivity of cereals during unexpected rainfall deficits, or to extend
their cultivation into semi-arid and saline regions, by foliar applications of alkanolamines,
further phospholipid moieties (Keith Cowan 2006), cytokinin-like acting substances
(Chernyad'ev and Monakhova 2003; Monakhova and Chernyad'ev 2007; Tassi et al. 2008),
or equivalent biogenic compounds (see Appendix section). The treatment should also
revalorize the economic role of the multitude of traditional cereal cultivars in use which are
adapted to the local soil and climate conditions. Transfer of genomic stress and salt tolerance
to plants (e.g., Dita et al. 2006; Dunwell 2004; Gao et al. in press; Rajam et al. 1998; Vasil
2007) can be linked with consume of energy and assimilates, yield loss, and the accumulation
of (unwelcome) secondary metabolites (Alscher and Cumming 1990; Bergmann et al. 1996;
Caruso et al. 2002; Forrest 1994; Kogel et al. 1994; Schlee 1992).
6. R EFERENCES
Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., Tiburcio, A. F.
& Altabella, T. (2006). Involvement of polyamines in plant response to abiotic stress.
Biotechnol. Lett., 28, 1867-1876.
Alscher, R. G. & Cumming, J. (1990). Stress Responses in Plants . Adaption and Acclimation
Mechanisms . New York: Whiley Liss Inc.
Ashraf, M., Nawaz, K., Athar, H.-ur-R. & Raza, S. H. (2008). Growth enhancement in two
potential cereal crops, maize and wheat, by exogenous application of glycinebetaine. In
Biosaline Agriculture and High Salinity Tolerance (pp. 21-35). Basel, Swiss: Birkhäuser.
Baker, C. J. & Orlandi, E. W. (1995). Active oxygen in plant pathogenesis. Annu. Rev.
Phytopathol. , 33, 299-321.
Bartosz, G. (1997). Oxidative stress in plants. Acta Physiol. Plant., 19, 47-64.
Benavides, M. P., Gallego, S. M., Comba, M. E. & Tomaro, M. L. (2000). Relationship
between polyamines and paraquat toxicity in sunflower leaf discs. J. Plant Growth
Regul., 31, 215-224.
Bergmann, H. & Eckert, H. (1984). Einfluss von Glycinbetain auf die Wasserausnutzung und
CO 2 -Assimilation in Winterweizen ( Triticum aestivum L.). Biol. Plant., 26, 384-387.
Bergmann, H. & Eckert, H. (1990). Effect of monoethanolamine on growth and biomass
formation of rye and barley. Plant Growth Regul. , 9, 1-8.
Bergmann, H. (1996). Physiologische Wirkungen von biogenen Aminen bei Pflanzen. In D.
M. Beutling (Ed.), Biogene Amine in der Ernährung (pp. 31-58). Berlin: Springer.
Bergmann, H., Eckert, H., Kachel, K. & Roth, D. (1983). Der Einfluss von Ethanolamin auf
den Kornertrag von Sommergerste bei unterschiedlichen klimatischen Wasserbilanzen.
Arch. Acker- u. Pflanzenbau u. Bodenkd. , 27, 127-134.
Search WWH ::




Custom Search