Geoscience Reference
In-Depth Information
CO 2 content? Paleoceanography , 22 , PA1202, doi:10.1029/
2006PA001311.
Broecker, W.S. and Peng, T.-H. (1989). The cause of the gla-
cial to interglacial atmospheric CO 2 change: a polar
alkalinity hypothesis. Global Biogeochemical Cycles , 3 ,
215-39.
Broecker, W. S. and Sanyal, A. (1998). Does atmospheric
CO 2 police the rate of chemical weathering? Global
Biogeochemical Cycles , 12 , 403-8.
Caldeira, K. (1992). Enhanced Cenozoic chemical weather-
ing and the subduction of pelagic carbonate. Nature ,
357 , 578-81.
Caldeira, K. (2007). What corals are dying to tell us about
CO 2 and ocean acidii cation. Oceanography , 20 , 188-95.
Caldeira, K. and Wickett, M.E. (2003) Anthropogenic car-
bon and ocean pH. Nature , 425 , 365.
Crowley, T.J. and Burke, K.C. (1998). Tectonic boundary
conditions for climate reconstructions , 285 pp. Oxford
University Press, Oxford.
Dickens, G.R. (2000). Methane oxidation during the late
Palaeocene Thermal Maximum. Bulletin de la Societé
Géologique de France , 171 , 37-49.
Dickens, G.R., O'Neil, J.R., Rea, D.K., and Owen, R.M.
(1995). Dissociation of oceanic methane hydrate as a
cause of the carbon isotope excursion at the end of the
Paleocene. Paleoceanography , 10 , 965-71.
Dore J.E., Lukas R., Sadler D.W., Church M.J., and Karl
D.M. (2009). Physical and biogeochemical modulation of
ocean acidii cation in the central North Pacii c. Proceedings
of the National Academy of Sciences , 106 , 12235-40.
Elsig, J., Schmitt, J., Leuenberger, D. et al . (2009). Stable iso-
tope constraints on Holocene carbon cycle changes from
an Antarctic ice core. Nature , 461 , 507-10.
Erba, E. and Tremolada, F. (2004). Nannofossil carbonate
l uxes during the Early Cretaceous: phytoplankton
response to nutrii cation episodes, atmospheric CO 2 ,
and anoxia. Paleoceanography , 19 , PA1008, doi:10.1029/
2003PA000884.
Foster, G.L. (2008). Seawater pH, p CO 2 and [CO 3 2- ] varia-
tions in the Caribbean Sea over the last 130 kyr: a boron
isotope and B/Ca study of planktic foraminifera. Earth
and Planetary Science Letters , 271 , 254-66.
Gibbs, S.J., Bown, P.R., Sessa, J.A., Bralower, T., and Wilson,
P. (2006). Nannoplankton extinction and origination
across the Paleocene-Eocene Thermal Maximum.
Science , 314 , 1770-3.
Goodwin, P., Williams, R.G., Ridgwell, A., and Follows,
M.J. (2009). Climate sensitivity to the carbon cycle mod-
ulated by past and future changes in ocean chemistry.
Nature Geoscience , 2 , 145-50.
Henderiks, J. and Pagani, M. (2008). Coccolithophore cell
size and the Paleogene decline in atmospheric CO 2 .
Earth and Planetary Science Letters , 269 , 575-83.
Hester, K.C., Peltzer, E.T., Kirkwood, W.J., and Brewer,
P.G. (2008). Unanticipated consequences of ocean acidi-
i cation: a noisier ocean at lower pH. Geophysical Research
Letters , 35 , L19601, doi:10.1029/2008GL034913.
Hönisch, B. and Hemming, N.G. (2005). Surface ocean pH
response to variations in p CO 2 through two full glacial
cycles. Earth and Planetary Science Letters , 236 , 305-14.
Hönisch, B., Hemming, N.G., Archer, D., Siddall, M., and
McManus, J.F. (2009). Atmospheric carbon dioxide con-
centration across the mid-Pleistocene transition. Science ,
324 , 1551-4.
Ilyina, T., Zeebe, R.E., and Brewer, P.G. (2010). Future ocean
increasingly transparent to low-frequency sound owing
to carbon dioxide emissions. Nature Geoscience , 3 , 18-22.
Kennett, J.P. and Stott, L.D. (1991). Abrupt deep-sea warm-
ing, palaeoceanographic changes and benthic extinctions
at the end of the Palaeocene. Nature , 353 , 225-9.
Kiessling, W. (2001). Paleoclimatic signii cance
of
Phanerozoic reefs. Geology , 29 , 751-4.
Kiessling, W. and Simpson, C. (2011). On the potential for
ocean acidii cation to be a general cause of ancient reef
crises. Global Change Biology , 17 , 56-67.
Knoll, A.H. (2003). Biomineralization and evolutionary
history. Reviews in Mineralogy and Geochemistry ,
54 ,
329-56.
Kohfeld, K.E., and Ridgwell, A. (2009). Glacial-interglacial
variability in atmospheric CO 2 . In: C. Le Quere and E.S.
Saltzman (eds), Surface ocean-lower atmosphere processes ,
pp. 251-86. Geophysical Monograph 187. American
Geophysical Union, Washington, DC.
Kump, L.R., Bralower, T.J., and Ridgwell, A. (2009). Ocean
acidii cation in deep time. Oceanography , 22 , 94-107.
Li, Y.-X., Bralower, J.T., Montañez, I.P. et al . (2008). Toward
an orbital chronology for the early Aptian Oceanic
Anoxic Event (OAE1a, ~ 120 Ma). Earth and Planetary
Science Letters , 271 , 88-100.
Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., and
Hardie, L. A. (2001). Oscillations in Phanerozoic seawa-
ter chemistry: evidence from l uid inclusions. Science ,
294 , 1086-8.
Lüthi, D., Le Floch, M., Bereiter, B. et al . (2008). High-
resolution carbon dioxide concentration record 650,000 -
800,000 years before present. Nature , 453 , 379-82.
Martin, R.E. (1995). Cyclic and secular variation in micro-
fossil biomineralization—clues to the biogeochemical
evolution of Phanerozoic oceans. Global and Planetary
Change , 11 , 1-23.
Mehay, S., Keller, C.E., Bernasconi, S.M. et al . (2009). A vol-
canic CO 2 pulse triggered the Cretaceous Oceanic Anoxic
Event 1a and a biocalcii cation crisis. Geology , 37 , 819-22.
Millero, F.J., Woosley, R., DiTrolio, B., and Waters, J. (2009).
Effect of ocean acidii cation on the speciation of metals
in seawater. Oceanography , 22 , 72-85.
Search WWH ::




Custom Search