Geoscience Reference
In-Depth Information
air sampling network , Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, US
Department of Energy, Oak Ridge, TN, USA.
Kleypas, J.A. and Yates, K.K. (2009). Coral reefs and ocean
acidii cation. Oceanography , 22 , 108-17.
Kleypas, J.A., Buddemeier, R.W., Archer, D., Gattuso, J.-P.,
Langdon, C., and Opdyke, B.N. (1999). Geochemical
consequences of increased atmospheric CO 2 on coral
reefs. Science , 284 , 118-20.
Langdon, C., Takahashi, T., Marubini, F. et al. (2000). Effect
of calcium carbonate saturation state on the rate of calci-
i cation of an experimental coral reef. Global
Biogeochemical Cycles , 14 , 639-54.
Langer, G., Geisen, M., Baumann, K.H. et al. (2006).
Species-specii c responses of calcifying algae to changing
seawater carbonate chemistry. Geochemistry, Geophysics,
Geosystems , 7 , Q09006, doi:10.1029/2005GC001227.
Lavigne, H. and Gattuso, J.-P. (2010). seacarb: seawater
carbonate chemistry with R . R package version 2.3.3.
http://cran-project.org/package=seacarb .
Leclercq, N., Gattuso, J.-P., and Jaubert, J. (2000). CO 2 par-
tial pressure controls the calcii cation rate of a coral
community. Global Change Biology , 6 , 329-34.
Le Quéré, C., Raupach, M.R., Canadell, J.G. et al. (2009).
Trends in the sources and sinks of carbon dioxide. Nature
Geoscience , 2 , 831-6.
Levitan, O., Rosenberg, G., Setlik, I. et al. (2007). Elevated
CO 2 enhances nitrogen i xation and growth in the
marine cyanobacterium Trichodesmium. Global Change
Biology , 13 , 531-8.
Lueker, T.J., Dickson, A.G., and Keeling, C.D. (2000). Ocean
p CO 2 calculated from dissolved inorganic carbon, alka-
linity, and equations for K 1 and K 2 : validation based on
laboratory measurements of CO 2 in gas and seawater at
equilibrium. Marine Chemistry , 70 , 105-19.
Lüthi, D., Le Floch, M., Bereiter, B. et al. (2008). High-resolution
carbon dioxide concentration record 650,000-800,000
years before present. Nature , 453 , 379-82.
McClendon, J.F. (1917). Physical chemistry of vital phe-
nomena , 240 pp. Princeton University Press, Princeton,
NJ.
McClendon, J.F. (1918). On changes in the sea and their
relation to organisms. Carnegie Institution of Washington
Publication , 252 , 213-58.
Madshus, I.H. (1988). Regulation of intracellular pH in
eukaryotic cells. Biochemistry Journal , 250 , 1-8.
Miller, A.W., Reynolds, A.C., Sobrino, C., and Riedel, G.F.
(2009). Shelli sh face uncertain future in high CO 2 world:
inl uence of acidii cation on oyster larvae calcii cation
and growth in estuaries. PLoS ONE , 4 , e5661.
Millero, F.J. (2006). Chemical oceanography . CRC/Taylor
and Francis, Boca Raton, FL.
Millero, F.J., Woosley, R., DiTrolio, B., and Waters, J. (2009).
Effect of ocean acidii cation on the speciation of metals
in seawater. Oceanography , 22 , 72-85.
Moore, B., Roaf, H.E., and Whitley, E. (1906). On the effects
of alkalies and acids, and of alkaline and acid salts,
upon growth and cell division in the fertilized eggs of
Echinus esculentus . A study in relationship to the causa-
tion of malignant disease. Proceedings of the Royal Society
of London. Series B: Biological Sciences , 77 , 102-36.
Naki ´enovi ´, N., Alcamo, J., Davis, G. et al. (2000). Special
report on emissions scenarios: a special report of Working
Group III of the Intergovernmental Panel on Climate Change ,
599 pp. Cambridge University Press, Cambridge.
Ocean Acidii cation Reference User Group (2009). Ocean
acidii cation: the facts. A special introductory guide for policy
advisers and decision makers (ed. D.d'A. Laffoley and J.M.
Baxter), 12 pp. European Project on Ocean Acidii cation
(EPOCA).
Olafsson, J., Olafsdottir, S.R., Benoit-Cattin, A., Danielsen,
M., Arnarson, T.S., and Takahashi, T. (2009). Rate of
Iceland Sea acidii cation from time series measure-
ments. Biogeosciences , 6 , 2661-8.
Orr, J.C., Fabry, V.J., Aumont, O. et al. (2005). Anthropogenic
ocean acidii cation over the twenty-i rst century and its
impact on calcifying organisms. Nature , 437 , 681-6.
Plattner, G.K., Joos, F., Stocker, T.F., and Marchal, O. (2001).
Feedback mechanisms and sensitivities of ocean carbon
uptake under global warming. Tellus B , 53 , 564-92.
Powers, E.B. (1920). The variation of the condition of sea-
water, especially the hydrogen ion concentration, and
its relation to marine organisms. Washington State
University Puget Sound Biological Station Publication , 2 ,
369-85.
Powers, E.B. (1922). The physiology of the respiration of
i shes in relation to the hydrogen ion concentration of
the medium. Journal of General Physiology , 4 , 305-17.
Prytherch, H.F. (1929). Investigation of the physical condi-
tions controlling spawning of oysters and the occur-
rence, distribution, and setting of oyster larvae in
Milford Harbor, Connecticut. US Bureau of Fisheries,
Bulletin , 44 , 429-503.
Reinfelder, J.R. (2011). Carbon concentrating mechanisms
in eukaryotic marine phytoplankton. Annual Review of
Marine Science , 3 , 291-315.
Revelle, R. and Suess, H.E. (1957). Carbon dioxide
exchange between atmosphere and ocean and the ques-
tion of an increase of atmospheric CO 2 during the past
decades. Tellus , 9 , 18-27.
Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., and
Morel, F.M.M. (2000). Reduced calcii cation of marine
plankton in response to increased atmospheric CO 2 .
Nature , 407 , 364-7.
Search WWH ::




Custom Search