Geoscience Reference
In-Depth Information
Huesemann, M.H., Skillman, A.D., and Crecelius, E.A. (2002).
The inhibition of marine nitrii cation by ocean disposal
of carbon dioxide. Marine Pollution Bulletin , 44 , 142-8.
Hutchins, D.A., Fu, F.-X., Zhang, Y. et al. (2007). CO 2 con-
trol of Trichodesmium N 2 i xation, photosynthesis, growth
rates and elemental ratios: implications for past, present
and future ocean biogeochemistry. Limnology and
Oceanography , 52 , 1293-304.
Hutchins, D.A., Mulholland, M.R., and Fu, F. (2009).
Nutrient cycles and marine microbes in a CO 2 -enriched
ocean. Oceanography , 22 , 128-45.
Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E.M.
et al. (2008). Phytoplankton calcii cation in a high-CO 2
world. Science , 320 , 336-40.
Jenkins, B.D. and Zehr, J.P. (2008). Molecular approaches
to the nitrogen cycle. In: D.G. Capone, D.A. Bronk, M.R.
Mulholland, and E.J. Carpenter (eds), Nitrogen in the
marine environment , pp. 1303-44. Elsevier, Amsterdam.
Jin, X. and Gruber, N. (2003). Offsetting the radiative ben-
ei t of ocean iron fertilization by enhancing N 2 O emis-
sions. Geophysical Research Letters ,
Montoya, J.P., Holl, C.M., Zehr, J.P., Hansen, A., Villareal,
T.A., and Capone, D.G. (2004). High rates of N 2 -i xation
by unicellular diazotrophs in the oligotrophic Pacii c.
Nature , 430 , 1027-32.
Morse, J.W., Arvidson, R.S., and Lüttge, A. (2007). Calcium
carbonate formation and dissolution. Chemical Reviews ,
107 , 342-81.
Moore, L.R., Post, A.F., Rocap, G., and Chisholm, S.W.
(2002). Utilization of different nitrogen sources by the
marine cyanobacteria Prochlorococcus and Synechococcus .
Limnology and Oceanography , 47 , 989-96.
Oschlies, A. (2009). Impact of atmospheric and terrestrial
CO 2 feedbacks on fertilization-induced marine carbon
uptake. Biogeosciences , 6 , 1603-13.
Oschlies, A., Schulz, K.G., Riebesell, U., and Schmittner, A.
(2008). Simulated 21st century's increase in oceanic sub-
oxia by CO 2 enhanced biotic carbon export. Global
Biogeochemical
Cycles ,
22 ,
GB4008,
doi:
10.1029/2007GB003147.
Pahlow, M., Vezina, A.F., Casault, B. et al. (2008). Adaptive
model of plankton dynamics for the North Atlantic.
Progress in Oceanography , 76 , 151-91.
Passow, U. and De La Rocha, C.L. (2006). Accumulation of
mineral ballast on organic aggregates. Global
Biogeochemical
30 , 2249, doi:
10.1029/2003GL018458.
Jin, X., Gruber, N., Frenzel, H., Doney, S.C., and
McWilliams, J.C. (2008). The impact on atmospheric
CO 2 of iron fertilization induced changes in the ocean's
biological pump. Biogeosciences , 5 , 385-406.
Keeling, R.F., Körtzinger, A., and Gruber, N. (2010). Ocean
deoxygenation in a warming world. Annual Review of
Marine Science , 2 , 199-229.
Keir, R.S. (1980). The dissolution kinetics of biogenic car-
bonate in seawater. Geochimica et Cosmochimica Acta , 44 ,
241-52.
Khatiwala, S., Primeau, F., and Hall, T. (2009).
Reconstruction of the history of anthropogenic CO 2 con-
centrations in the ocean. Nature , 462 , 346-9.
Klaas, C. and Archer, D.E. (2002). Association of sinking
organic matter with various types of mineral ballast in
the deep sea: implications for the rain ratio. Global Biogeo-
chemical Cycles , 16 , 1116, doi:10.1029/2001GB001765.
Kranz, S.A., Sültemeyer, D., Richter, K.-U., and Rost, B.
(2009). Carbon acquisition by Trichodesmium : the
effect of p CO 2 and diurnal changes. Limnology and
Oceanography , 54 , 548-59.
Levitan, O., Rosenberg, G., Setlik, I. et al. (2007). Elevated
CO 2 enhances nitrogen i xation and growth in the
marine cyanobacterium Trichodesmium . Global Change
Biology , 13 , 531-8.
Middelburg, J.J., Soetaert, K., Herman, P.M.J., and Heip,
C.H.R. (1996). Denitrii cation in marine sediments: a
model study. Global Biogeochemical Cycles , 10 , 661-73.
Moisander, P.H., Beinart, R.A., Hewson, I. et al. (2010).
Unicellular cyanobacterial distributions broaden the
oceanic N 2 i xation domain. Science , 327 , 1512-14.
Cycles ,
20 ,
GB1013,
doi:10.1029/2005GB002579.
Ridgwell, A. and Hargreaves, J.C. (2007). Regulation of atmos-
pheric CO 2 by deep-sea sediments in an Earth System
Model. Global Biogeochemical Cycles ,
21 , GB2008, doi:
10.1029/2006GB002764.
Ridgwell, A., Zondervan, I., Hargreaves, J.C., Bijma, J.,
and Lenton, T.M. (2007). Assessing the potential long-
term increase of oceanic fossil fuel CO 2 uptake due to
CO 2 -calcii cation feedback. Biogeosciences , 4 , 481-92.
Ridgwell, A., Schmidt, D.N., Turley, C. et al. (2009). From
laboratory manipulations to Earth system models: scal-
ing calcii cation impacts of ocean acidii cation.
Biogeosciences , 6 , 2611-23.
Riebesell, U., Schulz, K.G., Bellerby, R.G.J. et al. (2007).
Enhanced biological carbon consumption in a high CO 2
ocean. Nature , 450 , 545-8.
Rost, B., Zondervan, I., and Wolf-Gladrow, D. (2008).
Sensitivity of phytoplankton to future changes in ocean
carbonate chemistry: current knowledge, contradictions
and research directions. Marine Ecology Progress Series ,
373 , 227-37.
Sarmiento, J.L., Le Quéré, C., and Pacala, S.W. (1995).
Limiting future atmospheric carbon dioxide. Global
Biogeochemical Cycles , 9 , 121-37.
Sarmiento, J.L., Hughes, T.M.C., Stouffer, R.J., and
Manabe, S. (1998). Simulated response of the ocean car-
bon cycle to anthropogenic climate warming. Nature ,
393 , 245-9.
Search WWH ::




Custom Search