Biomedical Engineering Reference
In-Depth Information
Innovative Technologies in Bio-Based Economy.
The Netherlands, 8th April, Wageningen.
Jonoobi, M., Harun, J., Mathew, A. P., and Oks-
man, K. (2010). Mechanical properties of cel-
lulose nanofiber (CNF) reinforced polylactic
acid (PLA) prepared by twin screw extrusion.
Composites Science and Technology 70(12),
1742-1747.
Karus, M. and Kaup, M. (2005). Natural fibres
in the European automotive industry. Journal of
Industrial Hemp 7, 131.
Karus, M., Ortmann, S., Gahle, C., and Pendar-
ovski, C. (2006). Einsatz von Naturfasern in Ver-
bundwerkstoffen für die Automobilproduktion in
Deutschland von 1999 bis 2005. Nova Institut,
Hürth, Germany.
Lee, B., Kim, H., Lee, S., Kim, H., and Dorgan,
J. (2009). Bio-composites of kenaf fibers in
polylactide: Role of improved interfacial adhe-
sion in the carding process. Composites Science
and Technology 69 , 2573-2579.
Lee, S. H. and Ohkita, T. (2004). Bamboo fiber
(BF)-filled poly(butylenes succinate) bio-com-
posite--Effect of BF-e-MA on the properties
and crystallization kinetics. Holzforschung 58, 7.
Lee, S. H. and Wong, S. (2006). Biodegradable
polymers/bamboo fiber biocomposite with bio-
based coupling agent. Composites: Part A 37,
80-91.
Lim, L., Auras, R., and Rubino, M. (2008). Pro-
cessing technologies for poly(lactic acid). Prog-
ress in Polymer Science 33 , 820-852.
Mieck, K. P., Reussmann, T., and Hauspurg, C.
(2000). Correlations for the fracture work and
falling weight impact properties of thermoplastic
natural/long fibre composites. Materialwissen-
schaft und Werkstofftechnik 31 , 169-174.
Moser, K. (Ed.) (1992). Faser-Kunststoff-
Verbund. Entwurfs- und Berechnungsgrundla-
gen. Düsseldorf, Germany. VDI Verlag GmbH,
(ISBN 3-18-401187-9).
Nampoothiri, K. M., Nair, N. R., and John, R. P.
(2010). An overview of the recent developments
in polylactide (PLA) research. Bioresource Tech-
nology 101 , 8493-8501.
Plackett, D. (2004). Maleated Polylactide as an
Interfacial Compatibilizer in Biocomposites. J.
Polym. Environ . 12(3), 131-138.
Tokoro, R., Vu, D. M., Okubo, K., Tanaka, T.,
Fuji, T., and Fujura, T. (2008). How to improve
mechanical properties of polylactic acid with
bamboo fibers. J. Mater. Sci . 43, 775-785.
Yu, T., Ren, J., Li, S., Yuan, H., and Li, Y. (2010).
Effect of fibre surface-treatments on the proper-
ties of poly(lactic acid)/ramie composites. Com-
posites: Part A 41, 499-505.
17
Alemdar, A. and Sain, M. (2008). Isolation and
characterization of nanofibers from agricultural
residueswheatstraw and soy hulls. Bioresorce
Technology 99 , 16641671.
Ashori, A., Jalaluddin, H., Raverty, W. D., and
Mohd Nor, M. Y. (2006). Chemical and morpho-
logical characteristics of Malaysia Cultivated
Kenaf ( Hibiscusecannabinus ) fiber. Polym-Plast
Technol. Eng. 45 (1), 131134.
Azizi Samir, M. A. S., Alloin, F., Sanchez, J. Y.,
and Dufresne, A. (2004). Cellulose nanocrys-
tal reinforced poly(oxythylene). Polymer 45 ,
41494157.
Bibin Mathew Cherian, Alcides Lopes Leão,
Sivoney Ferreira de Souza, Sabu Thomas, Laly
A. Pothan, M. Kottaisamy. (2010). Isolation
of nanocellulose from pineapple leaf fibers by
steam explosion. Carbohydrate Polymers 81 ,
720725.
Bondeson, D. and Oksman, K. (2007). Polylactic
acid/cellulose whisker nanocomposites modi-
fied by polyvinyl alcohol, Composites Part A-
Applied Science 38 , 24862492.
Candanedo, S. B., Roman, M., and Gray, D. G.
(2005). Effect of reaction conditions on the prop-
erties and behavior of wood cellulose nanocrys-
tal suspensions. Biomacromolecule 6 , 10481054.
De SouzeLima, M. M. and Borsali, R. (2004).
Rodlike cellulose microcrystals: Structure, prop-
erties, and applications. Macromolecular Rapid
Communications 25 , 771787.
Fahmy, T. Y. A. and Mobarak, F. (2008). Nano-
composites from natural cellulose fibers filled
with kaolin in presence of sucrose. Carbohy-
drate Polymers 72 , 751755.
Franco, P. J. H. and Gonzalez, A. V. (2005). A
study of the mechanical properties of short
Search WWH ::




Custom Search