Information Technology Reference
In-Depth Information
73. K. Teker, E. Wickstrom, and B. Panchapakesan. Biomolecular tuning of electronic
transport properties of carbon nanotubes via antibody functionalization. Sensors
Journal, 6(6): pp 1422-1428, Dec 2006.
74. G. Ruffini, et al. Engineering in Medicine and Biology Society, 2006 (EMBS '06) 28th
Annual International Conference of the IEEE, Aug 2006. ENOBIO: First Tests of a
Dry Electrophysiology Electrode using Carbon Nanotubes.
75. J. Tkac, J. Whittaker, T. Ruzgas, and S. O. Tautgirdas. The use of single walled
carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose
biosensor. Biosensors and Bioelectronic, 22(8): pp 1820-1824, Mar 15, 2007.
76. F. Qu, et al. Electrochemical biosensing utilizing synergic action of carbon nanotubes
and platinum nanowires prepared by template synthesis. Biosensors and Bioelectro-
nics, 22(8): pp 1749-1755, Mar 15, 2007.
77. R. Yang, et al. Single-walled carbon nanotubes-mediated in vivo and in vitro delivery
of siRNA into antigen-presenting cells. Gene Therapy, 13(24): pp 1714-1723, 2006.
78. Yu, Xin, et al. Carbon nanotube amplification strategies for highly sensitive
immunodetection of cancer biomarkers. Journal of the American Chemical Society,
128(34): pp 11199-11205, 2006.
79. J. Meng, et al. Using single-walled carbon nanotubes nonwoven films as scaffolds to
enhance long-term cell proliferation in vitro. Journal of Biomedical Materials Research,
79A(2): pp 298-306, 2006.
80. A. G. Cuenca, et al. Emerging implications of nanotechnology on cancer diagnostics
and therapeutics. Cancer, 107(3): pp 459-466, 2006.
81. K. Donaldson, et al. Carbon nanotubes: a review of their properties in relation to
pulmonary toxicology and workplace safety. Toxicological Sciences, 92(1): pp 5-22;
SN 1096-6080, 2006.
82. A. G. Cuenca, et al. Emerging implications of nanotechnology on cancer diagnostics
and therapeutics. Cancer, 107(3): pp. 459-466, 2006.
83. X. Chen, et al. Interfacing carbon nanotubes with living cells. Journal of the American
Chemical Society, 128(19): pp 6292-6293, 2006.
84. K. Balasubramanian and M. Burghard. Biosensors based on carbon nanotubes.
Analytical and Bioanalytical Chemistry, 385(3): pp 452-468, 2006.
85. C. Klumpp, et al. Functionalized carbon nanotubes as emerging nanovectors for the
delivery of therapeutics. Biochimica et Biophysica Acta, 1758(3): pp 404-412, 2006.
86. A. K. Wanekaya, et al. Nanowire-based electrochemical biosensors. Electroanalysis,
18(6): pp 533-550.
87. X. Shi, et al. Injectable nanocomposites of single-walled carbon nanotubes and
biodegradable polymers
for bone tissue engineering. Biomacromolecules, 7(7):
pp 2237-2242, 2006.
88. B. Marrs, et al. Augmentation of acrylic bone cement with multiwall carbon
nanotubes. Journal of Biomedical Materials Research, 77A(2): pp 269-276, 2006.
89. J. Riu, A. Maroto, F. Rius, and T. Xavier. Nanosensors in environmental analysis,
Nanowerk News, 69(2): pp 288-301, 2006.
90. G. Gruner. Carbon nanotube transistors for biosensing applications. Analytical and
Bioanalytical Chemistry, 384(2): pp 322-335, 2006.
91. R. Dagani. Nanomaterials: safe or unsafe? Chemical and Engineering News, 81(17):
pp 30-33, 2003.
 
Search WWH ::




Custom Search