Information Technology Reference
In-Depth Information
39. J. Fraysse, A. I. Minett, O. Jaschinski, G. S. Duesberg, and S. Roth. Carbon
nanotubes acting like actuators. Carbon, 40: pp 1735-1739, 2002.
40. H. P. Monner, S. Muhle, and P. Wierach. Carbon nanotubes as actuators in smart
structures. Proceedings of SPIE, 5053: pp 138-146, 2003.
41. Y. Gogotsi, J. A. Libera, A. G. Yazicioglu, and C. M. Megaridis. In situ multiphase
fluid experiments in hydrothermal carbon nanotubes. Applied Physics Letters, 79(7):
pp 1021-1023, 2001.
42. Briefing Paper: Institute of Neurosciences, Mental Health and Addiction. CIHR. Feb
2003. http://www.regenerativemedicine.ca/nanomed/Nanomedicine%20Taxonomy%
20(Feb%202003).pdf
43. K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computation-
New York: Wiley, 1992.
44. J. Cumings and A. Zettle. Low-friction nanoscale linear bearing realized from
multiwall carbon nanotubes. Science, 289: pp 602-604, 2000.
45. M. A. Correa-Duarte, N. Wagner, J. Rojas-Chapana, C. Morsczeck, M. Thie, and
M. Giersig. Fabrication and biocompatibility of carbon nanotube-based 3D networks
as scaffolds for cell seeding and growth. (Letter): pp 2233-2236.
46. D. Pantarotto, et al. Translocation of bioactive peptides across cell membranes by
carbon nanotubes. Chemical Communications: pp 16-17, 2004.
47. W. Wu, et al. Targeted delivery of amphotericin B to cells by using functionalized
carbon nanotubes. Angewandte Chemie International Edition, 44: pp 6358-6362, 2009.
48. Z. Yinghuai, et al. Substituted carborane-appended water-soluble single-wall carbon
nanotubes: new approach to boron neutron capture therapy drug delivery. Journal of
American Chemistry Society SOC: pp 9875-9880, 2005.
49. Q. Lu, et al. RNA polymer translocation with single-walled carbon nanotubes. Nano
Letters, 6: pp 2473-2477, 2004.
50. N. W. S. Kam, et al. Carbon nanotubes as intracellular transporters for proteins and
DNA: an investigation of the uptake mechanism and pathway. Angewandte Chemie
International Edition, 45: pp 577-581, 2006.
51. D. Cai, et al. Highly efficient molecular delivery into mammalian cells using carbon
nanotube spearing. Natural Methologies, 2: pp 449-454, 2005.
52. N. W. S. Kam, et al. Carbon nanotubes as multifunctional biological transporters and
near-infrared agents for selective cancer cell destruction. Proceedings of the National
Academy of Sciences, 102: pp 11600-11605, 2005.
53. R. B. Weisman, et al. Fluorescence spectroscopy of single-walled carbon nanotubes
in aqueous suspension. Applied Physics A: Materials Science and Processing, 78:
pp 1111-1116, 2004; D. A. Tsyboulski, et al. Versatile visualization of individual
single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano
Letters, 5: pp 975-979, 2005.
54. K. Ko¨ nig. Multiphoton microscopy in life sciences. Journal of Microscopy, 200:
pp 83-104, 2000.
55. D. R. Larson, et al. Water-soluble quantum dots for multiphoton fluorescence
imaging in vivo. Science, 300: pp 1434-1436, 2003.
56. M. Bottini, et al. Full-length single-walled carbon nanotubes decorated with strepta-
vidin conjugated quantum dots as multivalent intracellular fluorescent nanoprobes.
Biomacromolecules: 2006.
 
Search WWH ::




Custom Search