Information Technology Reference
In-Depth Information
3. N. Sinha and J. T. Yeow. Carbon nanotubes for biomedical applications. IEEE
Transactions on Nanobioscience, 4(2): pp. 180-195, June 2005.
4. B. S. Harrison and A. Atala. Carbon nanotube applications for tissue engineering.
Biomaterials, 28(2): pp 344-353, 2007.
5. D. A. Rey, C. A. Batt, and J. C. Miller. Carbon nanotubes in biomedical applications.
Nanotechnology Law and Business: p 263, Sep 2003.
6. R. H. Baughman. Putting a new spin on carbon nanotubes. Science, 290: p 1310, 2000.
7. T. Mangir, J. Chaves, and S. Chaves. Carbon nanotube/bacteria interface: implica-
tions for bioapplications of carbon nanotubes. Submitted to NSTI 2008.
8. G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and
O. Zhou. Generation of continuous and pulsed diagnostic imaging x-ray radiation
using a carbon-nanotube-based field-emission cathode. Applied Physics Letters, 81(2):
pp 355-357, 2002.
9. Y. Cheng, J. Zhang, Y. Z. Lee, B. Gao, S. Dike, W. Lin, J. P. Lu, and O. Zhou.
Dynamic radiography using a carbon-nanotube-based fieldemission x-ray source.
Review of Scientific Instruments, 75(10): pp 3264-3267, 2004.
10. J. Liu and H. Dai. Design, fabrication, and testing of piezoresistive pressure sensors
using carbon nanotubes. 2002. http://www.nnf.cornell.edu/2002reu/Liu.pdf.
11. M. Romero, R. Figueroa, and C. Madden. Pressure sensing systems for medical
devices. Medical Device and Diagnostic Industry Magazine, 2000. http://www.device-
link.com/mddi/archive/00/10/004.html.
12. H. Joseph, B. Swafford, and S. Terry. MEMS in the medical world. Sensor Magazine,
14: pp 47-51, Apr 1997.
13. K. Sakai. Artificial kidney engineering-dialysis membrane and dialyzer for blood
purification. Journal of Chemical Engineering of Japan, 30(4): pp 587-599, 1997.
14. S. Sotiropoulou and N. A. Chaniotakis. Carbon nanotube array-based biosensor.
Analytical and Bioanalytical Chemistry, 375: pp 103-105, 2003.
15. J. Wang, G. Liu, and M. R. Jan. Ultrasensitive electrical biosensing of proteins and
DNA: carbon-nanotube derived amplification of the recognition and transduction
events. Journal of American Chemistry Society, 126: pp 3010-3011, 2004.
16. Y. Xu, Y. Jiang, H. Cai, P. G. He, and Y. Z. Fang. Electrochemical impedance
detection of DNA hybridization based on the formation of M-DNA on ploypyrrole/
carbon nanotube modified electrode. Analytica Chimica Acta, 516: pp 19-27, 2004.
17. S. Ghoh, A. K. Sood, and N. Kumar. Carbon nanotube flow sensors. Science,
299(5609): pp 1042-1044, 2003.
18. K. Moloni, A. Lal, and M. Lagally. Sharpened carbon nanotube probes. Proceedings
of SPIE, 4098: pp 76-83, 2000.
19. Y. Nakayama, H. Nishijima, S. Akita, K. I. Hohmura, S. H. Yoshimura, and
K. Takeyasu. Microprocess for fabricating carbon nanotube probes of a scanning
probe microscope. Journal of Vacuum Science and Technology B: Microelectronics and
Nanometer Structures, 18(2): pp 661-664, 2000.
20. R. M. D. Stevens, N. A. Frederick, B. L. Smith, D. E. Morse, G. D. Stucky, and
P. K. Hansma. Carbon nanotubes as probes for atomic force microscopy. Nanotech-
nology, 11(1): pp 1-5, 2000.
21. C. V. Nguyen, K. J. Chao, R. M. D. Stevens, L. Delzeit, A. Cassell, J. Han, and
M. Meyyappan. Carbon nanotube tip probes: stability and lateral resolution in
 
Search WWH ::




Custom Search