Information Technology Reference
In-Depth Information
15. G. K. Hansson. Inflammation, atherosclerosis, and coronary artery disease: reply. New
England Journal of Medicine, 353(4): pp 429-430, 2005.
16. J. L. Witztum and D. Steinberg. Role of oxidized low-density-lipoprotein in athero-
genesis. Journal of Clinical Investigation, 88(6): pp 1785-1792, 1991.
17. P. F. Davies, et al. Influence of hemodynamic forces on vascular endothelial function.
In vitro studies of shear stress and pinocytosis in bovine aortic cells. Journal of Clinical
Investigation, 73(4): pp 1121-1129, 1984.
18. C. F. Dewey, et al. The dynamic response of vascular endothelial cells to fluid shear
stress. Journal of Biomechanical Engineering, 103(3): pp 177-185, 1981.
19. J. J. Chiu, et al. Effects of disturbed flow on endothelial cells. Journal of Biomechanical
Engineering, 120(1): pp 2-8, 1998.
20. Y. C. Fung and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels.
Journal of Biomechanical Engineering, 115(1): pp 1-12, 1993.
21. N. DePaola, et al. Vascular endothelium responds to fluid shear stress gradients.
Arterioscler Thrombosis, 12(11): pp 1254-1257, 1992. (Published erratum appears in
Arterioscler Thromb, 13(3): p 465, Mar 1993.)
22. J. A. Frangos, et al. Steady shear and step changes in shear stimulate endothelium via
independent mechanisms: superposition of transient and sustained nitric oxide produc-
tion. Biochemistry Biophysics Research Communications, 224(3): pp 660-665, 1996.
23. G. Helmlinger, et al. Calcium responses of endothelial cell monolayers subjected
to pulsatile and steady laminar flow differ. American Journal of Physiology, 269: pp
C367-375, 1995.
24. J. R. Buchanan, et al. Relation between non-uniform hemodynamics and sites of
altered permeability and lesion growth at the rabbit aorto-celiac junction. Athero-
sclerosis, 26(2): pp 215-224, 1999.
25. X. Deng, et al. Luminal surface concentration of lipid (LDL) and its effect on the wall
uptake of cholesterol by canine carotid arteries. Journal of Vascular Surgery, 21(1): pp
135-145, 1995.
26. P. D. Henry and C. H. Chen. Inflammatory mechanisms of atheroma formation:
influence of fluid mechanics and lipid-derived inflammatory mediators. American
Journal of Hypertension, 6(11 pt. 2): pp 328S-334S, 1993.
27. T. K. Hsiai, et al. Monocyte recruitment to endothelial cells in response to oscillatory
shear stress. Faseb Journal, 17(12): pp 1648-1657, 2003.
28. J. Hwang, et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase
subunit expression: implication for native LDL oxidation. Circulation Research, 93(12):
pp 1225-1232, 2003.
29. M. Rouhanizadeh, et al. Differentiation of oxidized low density lipoproteins by
nanosensors. Sensors and Actuators B-Chemical, 114(2): pp 788-798, 2006.
30. M. Rouhanizadeh, et al. MEMS sensors to resolve spatial variations in shear stress in a
3D blood vessel bifurcation model. IEEE Sensors Journal, 6(1): pp 78-88, 2006.
31. C. Li, et al. Chemical gating of In 2 O 3 nanowires by organic and biomolecules. Applied
Physics Letters, 83(19): pp 4014-4016, 2003.
32. T. Tang, et al. Complementary response of In 2 O 3 nanowires and carbon nanotubes to
low-density lipoprotein chemical gating. Applied Physics Letters, 86(10): 2005.
33. C. Li, et al. In 2 O 3 nanowires as chemical sensors. Applied Physics Letters, 82(10):
pp 1613-1615, 2003.
 
Search WWH ::




Custom Search