Information Technology Reference
In-Depth Information
7. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber. Directed assembly of one-dimensional
nanostructures into functional networks. Science, 291: p 630-633, 2001.
8. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier.
Manipulation and assembly of nanowires with holographic optical traps. Optics
Express, 13(22): p 8906-8912, 2005.
9. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt.
Optical trapping and integration of semiconductor nanowire assemblies in water.
Nature Materials, 5: pp 97-101, 2006.
10. J. E. Jang, S. N. Cha, Y. Choi, G. A. J. Amaratunga, D. J. Kang, D. G. Hasko, J. E.
Jung, and J. M. Kim. Nanoelectromechanical switches with vertically aligned carbon
nanotubes. Applied Physics Letters, 87: p 163114, 2005.
11. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, and C. M. Lieber.
Carbon nanotube-based nonvolatile random access memory for molecular computing.
Science, 289(5476): p 94-97, 2000.
12. P. Y. Chiou, A. T. Ohta, and M. C. Wu. Massively parallel manipulation of single cells
and microparticles using optical images. Nature, 436: p 370-372, 2005.
13. L. F. Dong, J. Bush, V. Chirayos, R. Solanki, J. Jiao, Y. Ono, J. F. Conley Jr., and B.
R. Ulrich. Dielectrophoretic controlled fabrication of single crystal nickel silicide
nanowire interconnects and the investigation of their formation mechanism. Nano
Letters, 5(10): p 2112-2115, 2005.
14. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber. Indium phosphide nanowires
as building blocks for nanoscale electronic and optoelectronic devices. Nature, 409: p
66-69, 2001.
15. T. H. Kim, S. Y. Lee, N. K. Cho, H. K. Seong, H. J. Choi, S. W. Jung, and S. K. Lee.
Dielectrophoretic alignment of gallium nitride nanowires (GaN NWs) for use in device
applications. Nanotechnology, 17(14): p 3394-3399, 2006.
16. Z. Chen, Y. Yang, F. Chen, Q. Qing, Z. Wu, and Z. Liu. Controllable interconnection
of single-walled carbon nanotubes under AC electric field. Journal of Physical
Chemistry B, 109(23): p 11420-11423, 2005.
17. S. W. Lee and R. Bashir. Dielectrophoresis and electrohydrodynamics-mediated fluidic
assembly of silicon resistors. Applied Physics Letters, 83(18): p 3833-3835, 2003.
18. O. Harnack, C. Pacholski, H. Weller, A. Yasuda, and J. M. Wessels. Rectifying
behavior of electrically aligned ZnO nanorods. Nano Letters, 3(8): p 1097-1101, 2003.
19. C. S. Lao, J. Liu, P. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang. ZnO
nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across
Au electrodes. Nano Letters, 6(2): p 263-266, 2006.
20. L. Shang, T. L. Clare, M. A. Eriksson, M. S. Marcus, K. M. Metz, and R. J. Hamers.
Electrical characterization of nanowire bridges incorporating biomolecular recognition
elements. Nanotechnology, 16: p 2846-2851, 2005.
21. A. D. Wissner-Gross. Dielectrophoretic reconfiguration of nanowire interconnects.
Nanotechnology, 17: p 4986-4990, 2006.
22. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber. Diameter-controlled
synthesis of
single-crystal
silicon nanowires. Applied Physics Letters, 78(15):
p 2214-2216, 2001.
23. D. R. Lide, editor. CRC Handbook of Chemistry and Physics, 82nd ed., New York:
CRC Press, pp 3-52, 6-163; 12-59, 2001.
 
Search WWH ::




Custom Search