Information Technology Reference
In-Depth Information
66. G. Snider, A. Orlov, C. Lent, G. Bernstein, M. Lieberman, and T. Fehlner.
Implementations of quantum-dot cellular automata. In: International Conference on
Nanoscience and Nanotechnology: 2006.
67. G. Toth and C. S. Lent. Role of correlation in the operation of quantum-dot cellular
automata. Journal of Applied Physics, 89: pp 7943-7953, 2001.
68. G. Toth. Correlation and coherence in quantum-dot cellular automata. In: Department
of Electrical Engineering, Ph.D. Notre Dame: University of Notre Dame, 2000, p 205.
69. R. Ravichandran, S. K. Lim, and M. Niemier. Automatic cell placement for quantum-
dot cellular automata. Integration: the VLSI Journal, 38: pp 541-548, 2005.
70. L. Sung Kyu, R. Ramprasad, and N. Mike. Partitioning and placement for buildable
QCA circuits. Journal on Emerging Technologies in Computing Systems, 1: pp 50-72, 2005.
71. W. J. Chung, B. Smith, and S. K. Lim. Node duplication and routing algorithms for
quantum-dot cellular automata circuits. IEEE Proceedings: Circuits Devices and
Systems, 153: pp 497-505, 2006.
72. K. Walus, G. Schulhof, G. A. Jullien, R. Zhang, and W. Wang. Circuit design based on
majority gates for applications with quantum-dot cellular automata. In: Conference
Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers,
Volume 2: pp 1354-1357, 2004.
73. R. Zhang, P. Gupta, L. Zhong, and N. K. Jha. Threshold network synthesis and
optimization and its application to nanotechnologies. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24: pp 107-118, 2005.
74. W. Wei, K. Walus, and G. A. Jullien. Quantum-dot cellular automata adders. In: 3rd
IEEE Conference on Nanotechnology, Volume 2: pp 461-464, 2003.
75. A. Vetteth, K. Walus, and G. A. Jullien. RAM design using quantum-dot cellular
automata. In: Nanotechnology Conference and Tradeshow: pp 160-163, 2003.
76. K. Walus, M. Mazur, G. Schulhof, and G. A. Jullien. Simple 4-bit processor based on
quantum-dot cellular automata (QCA). In: 16th IEEE International Conference on
Application-Specific Systems, Architecture Processors: pp 288-293, 2005.
77. G. Bazan, A. O.Orlov, G. L. Snider, and G. H. Bernstein. Charge detector realization
for AlGaAs/GaAs quantum-dot cellular automata. In: The 40th international con-
ference on electron, ion, and photon beam technology and nanofabrication: Atlanta,
Georgia, pp 4046-4050, 1996.
78. S. Gardelis, C. G. Smith, J. Cooper, D. A. Ritchie, E. H. Linfield, and Y. Jin. Evidence
for transfer of polarization in a quantum dot cellular automata cell consisting of
semiconductor quantum dots. Physical Review B, 67: p 033302, 2003.
79. T. E. Vandervelde, R. M. Kalas, P. Kumar, T. Kobayashi, T. L. Pernell, and J. C.
Bean. Conditions for self-assembly of quantum fortresses and analysis of their possible
use as quantum cellular automata. Journal of Applied Physics, 97: p 043513, 2005.
80. R. P. Cowburn and M. E. Welland. Room temperature magnetic quantum cellular
automata. Science, 287: pp 1466-1468, 2000.
81. M. Manimaran, G. L. Snider, C. S. Lent, V. Sarveswaran, M. Lieberman, Z. H. Li, and
T. P. Fehlner. Scanning tunneling microscopy and spectroscopy investigations of QCA
molecules. Ultramicroscopy, 97: pp 55-63, 2003.
82. K. Walus, R. A. Budiman, and G. A. Jullien. Impurity charging in semiconductor
quantum-dot cellular automata. Nanotechnology, 16: pp 2525-2529, 2005.
 
Search WWH ::




Custom Search