Information Technology Reference
In-Depth Information
49. C. Ungarelli, S. Francaviglia, M. Macucci, and G. Iannaccone. Thermal behavior
of quantum cellular automaton wires. Journal of Applied Physics, 87: pp 7320-7325,
2000.
50. M. Macucci, G. Iannaccone, S. Francaviglia, and B. Pellegrini. Semiclassical simula-
tion of quantum cellular automaton circuits. International Journal of Circuit Theory and
Applications, 29: pp 37-47, 2001.
51. P. D. Tougaw and S. L. Craig. Dynamic behavior of quantum cellular automata.
Journal of Applied Physics, 80: pp 4722-4736, 1996.
52. P. D. Tougaw and C. S. Lent. Quantum cellular-automata: computing with quantum-
dot molecules. Compound Semiconductors, 1994: pp 781-786, 1995.
53. C. S. Lent, P. D. Tougaw, and W. Porod. Quantum cellular automata: the physics of
computing with arrays of quantum dot molecules. In: Workshop on Physics and
Computation: pp 5-13, 1994.
54. J. Timler and C. S. Lent. Power gain and dissipation in quantum-dot cellular automata.
Journal of Applied Physics, 91: pp 823-831, 2002.
55. G. Toth and C. S. Lent. Quasiadiabatic switching for metal-island quantum-dot
cellular automata. Journal of Applied Physics, 85: pp 2977-2984, 1999.
56. K. Walus, G. A. Jullien, and V. S. Dimitrov. Computer arithmetic structures for
quantum cellular automata. In: Conference Record of the Thirty-Seventh Asilomar
Conference on Signals, Systems and Computers, Volume 2: pp 1435-1439, 2003.
57. S. E. Frost, T. J. Dysart, P. M. Kogge, and C. S. Lent. Carbon nanotubes for quantum-
dot cellular automata clocking. In: 4th IEEE Conference on Nanotechnology:pp
171-173, 2004.
58. W. Yue-Min, H. Kuo-Dong, S. F. Hu, C. L. Sung, and Y. C. Chou. Coulomb blockade
oscillations in ultrathin gate oxide silicon single-electron transistors. Journal of Applied
Physics, 97: p 116106, 2005.
59. T. M. Buehler, D. J. Reilly, R. P. Starrett, D. G. Andrew, A. R. Hamilton, A. S.
Dzurak, and R. G. Clark. Single-shot readout with the radio-frequency single-
electron transistor in the presence of charge noise. Applied Physics Letters, 86:
p 143117, 2005.
60. R. M. Zhang, K. Walus, W. Wang, and G. A. Jullien. A method of majority logic
reduction for quantum cellular automata. IEEE Transactions on Nanotechnology,3:pp
443-450, 2004.
61. P. D. Tougaw and S. L. Craig. Logical devices implemented using quantum cellular
automata. Journal of Applied Physics, 75: pp 1818-1825, 1994.
62. K. Walus, G. Schulhof, and G. A. Jullien. High level exploration of quantum-dot
cellular automata (QCA). In: Conference Record of the Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, Volume 1: pp 30-33, 2004.
63. G. Schulhof, K. Walus, and G. A. Jullien. Simulation of random cell displacements in
QCA. Journal on Emerging Technologies in Computing Systems, 3: p 2, 2007.
64. A. Gin, P. D. Tougaw, and S. Williams. An alternative geometry for quantum-dot
cellular automata. Journal of Applied Physics, 85: pp 8281-8286, 1999.
65. K. Walus, G. Schulhof, and G. A. Jullien. Implementation of a simulation engine for
clocked molecular QCA. In: Canadian Conference on Electrical and Computer En-
gineering: pp 2128-2131, 2006.
 
Search WWH ::




Custom Search